Skip to content

buffer

zarr.abc.buffer

ArrayLike

Bases: Protocol

Protocol for the array-like type that underlie Buffer

Source code in zarr/core/buffer/core.py
@runtime_checkable
class ArrayLike(Protocol):
    """Protocol for the array-like type that underlie Buffer"""

    @property
    def dtype(self) -> np.dtype[Any]: ...

    @property
    def ndim(self) -> int: ...

    @property
    def size(self) -> int: ...

    def __getitem__(self, key: slice) -> Self: ...

    def __setitem__(self, key: slice, value: Any) -> None: ...

Buffer

Bases: ABC

A flat contiguous memory block

We use Buffer throughout Zarr to represent a contiguous block of memory.

A Buffer is backed by a underlying array-like instance that represents the memory. The memory type is unspecified; can be regular host memory, CUDA device memory, or something else. The only requirement is that the array-like instance can be copied/converted to a regular Numpy array (host memory).

Notes

This buffer is untyped, so all indexing and sizes are in bytes.

Parameters:

  • array_like (ArrayLike) –

    array-like object that must be 1-dim, contiguous, and byte dtype.

Source code in zarr/core/buffer/core.py
class Buffer(ABC):
    """A flat contiguous memory block

    We use Buffer throughout Zarr to represent a contiguous block of memory.

    A Buffer is backed by a underlying array-like instance that represents
    the memory. The memory type is unspecified; can be regular host memory,
    CUDA device memory, or something else. The only requirement is that the
    array-like instance can be copied/converted to a regular Numpy array
    (host memory).

    Notes
    -----
    This buffer is untyped, so all indexing and sizes are in bytes.

    Parameters
    ----------
    array_like
        array-like object that must be 1-dim, contiguous, and byte dtype.
    """

    def __init__(self, array_like: ArrayLike) -> None:
        if array_like.ndim != 1:
            raise ValueError("array_like: only 1-dim allowed")
        if array_like.dtype != np.dtype("B"):
            raise ValueError("array_like: only byte dtype allowed")
        self._data = array_like

    @classmethod
    @abstractmethod
    def create_zero_length(cls) -> Self:
        """Create an empty buffer with length zero

        Returns
        -------
            New empty 0-length buffer
        """
        if cls is Buffer:
            raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
        return cls(
            cast("ArrayLike", None)
        )  # This line will never be reached, but it satisfies the type checker

    @classmethod
    def from_array_like(cls, array_like: ArrayLike) -> Self:
        """Create a new buffer of an array-like object

        Parameters
        ----------
        array_like
            array-like object that must be 1-dim, contiguous, and byte dtype.

        Returns
        -------
            New buffer representing `array_like`
        """
        return cls(array_like)

    @classmethod
    @abstractmethod
    def from_buffer(cls, buffer: Buffer) -> Self:
        """Create a new buffer of an existing Buffer

        This is useful if you want to ensure that an existing buffer is
        of the correct subclass of Buffer. E.g., MemoryStore uses this
        to return a buffer instance of the subclass specified by its
        BufferPrototype argument.

        Typically, this only copies data if the data has to be moved between
        memory types, such as from host to device memory.

        Parameters
        ----------
        buffer
            buffer object.

        Returns
        -------
            A new buffer representing the content of the input buffer

        Notes
        -----
        Subclasses of `Buffer` must override this method to implement
        more optimal conversions that avoid copies where possible
        """
        if cls is Buffer:
            raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
        return cls(
            cast("ArrayLike", None)
        )  # This line will never be reached, but it satisfies the type checker

    @classmethod
    @abstractmethod
    def from_bytes(cls, bytes_like: BytesLike) -> Self:
        """Create a new buffer of a bytes-like object (host memory)

        Parameters
        ----------
        bytes_like
            bytes-like object

        Returns
        -------
            New buffer representing `bytes_like`
        """
        if cls is Buffer:
            raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
        return cls(
            cast("ArrayLike", None)
        )  # This line will never be reached, but it satisfies the type checker

    def as_array_like(self) -> ArrayLike:
        """Returns the underlying array (host or device memory) of this buffer

        This will never copy data.

        Returns
        -------
            The underlying 1d array such as a NumPy or CuPy array.
        """
        return self._data

    @abstractmethod
    def as_numpy_array(self) -> npt.NDArray[Any]:
        """Returns the buffer as a NumPy array (host memory).

        Notes
        -----
        Might have to copy data, consider using `.as_array_like()` instead.

        Returns
        -------
            NumPy array of this buffer (might be a data copy)
        """
        ...

    def as_buffer_like(self) -> BytesLike:
        """Returns the buffer as an object that implements the Python buffer protocol.

        Notes
        -----
        Might have to copy data, since the implementation uses `.as_numpy_array()`.

        Returns
        -------
            An object that implements the Python buffer protocol
        """
        return memoryview(self.as_numpy_array())  # type: ignore[arg-type]

    def to_bytes(self) -> bytes:
        """Returns the buffer as `bytes` (host memory).

        Warnings
        --------
        Will always copy data, only use this method for small buffers such as metadata
        buffers. If possible, use `.as_numpy_array()` or `.as_array_like()` instead.

        Returns
        -------
            `bytes` of this buffer (data copy)
        """
        return bytes(self.as_numpy_array())

    def __getitem__(self, key: slice) -> Self:
        check_item_key_is_1d_contiguous(key)
        return self.__class__(self._data.__getitem__(key))

    def __setitem__(self, key: slice, value: Any) -> None:
        check_item_key_is_1d_contiguous(key)
        self._data.__setitem__(key, value)

    def __len__(self) -> int:
        return self._data.size

    @abstractmethod
    def __add__(self, other: Buffer) -> Self:
        """Concatenate two buffers"""
        ...

    def __eq__(self, other: object) -> bool:
        # Another Buffer class can override this to choose a more efficient path
        return isinstance(other, Buffer) and np.array_equal(
            self.as_numpy_array(), other.as_numpy_array()
        )

__add__ abstractmethod

__add__(other: Buffer) -> Self

Concatenate two buffers

Source code in zarr/core/buffer/core.py
@abstractmethod
def __add__(self, other: Buffer) -> Self:
    """Concatenate two buffers"""
    ...

as_array_like

as_array_like() -> ArrayLike

Returns the underlying array (host or device memory) of this buffer

This will never copy data.

Returns:

  • The underlying 1d array such as a NumPy or CuPy array.
Source code in zarr/core/buffer/core.py
def as_array_like(self) -> ArrayLike:
    """Returns the underlying array (host or device memory) of this buffer

    This will never copy data.

    Returns
    -------
        The underlying 1d array such as a NumPy or CuPy array.
    """
    return self._data

as_buffer_like

as_buffer_like() -> BytesLike

Returns the buffer as an object that implements the Python buffer protocol.

Notes

Might have to copy data, since the implementation uses .as_numpy_array().

Returns:

  • An object that implements the Python buffer protocol
Source code in zarr/core/buffer/core.py
def as_buffer_like(self) -> BytesLike:
    """Returns the buffer as an object that implements the Python buffer protocol.

    Notes
    -----
    Might have to copy data, since the implementation uses `.as_numpy_array()`.

    Returns
    -------
        An object that implements the Python buffer protocol
    """
    return memoryview(self.as_numpy_array())  # type: ignore[arg-type]

as_numpy_array abstractmethod

as_numpy_array() -> NDArray[Any]

Returns the buffer as a NumPy array (host memory).

Notes

Might have to copy data, consider using .as_array_like() instead.

Returns:

  • NumPy array of this buffer (might be a data copy)
Source code in zarr/core/buffer/core.py
@abstractmethod
def as_numpy_array(self) -> npt.NDArray[Any]:
    """Returns the buffer as a NumPy array (host memory).

    Notes
    -----
    Might have to copy data, consider using `.as_array_like()` instead.

    Returns
    -------
        NumPy array of this buffer (might be a data copy)
    """
    ...

create_zero_length abstractmethod classmethod

create_zero_length() -> Self

Create an empty buffer with length zero

Returns:

  • New empty 0-length buffer
Source code in zarr/core/buffer/core.py
@classmethod
@abstractmethod
def create_zero_length(cls) -> Self:
    """Create an empty buffer with length zero

    Returns
    -------
        New empty 0-length buffer
    """
    if cls is Buffer:
        raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
    return cls(
        cast("ArrayLike", None)
    )  # This line will never be reached, but it satisfies the type checker

from_array_like classmethod

from_array_like(array_like: ArrayLike) -> Self

Create a new buffer of an array-like object

Parameters:

  • array_like (ArrayLike) –

    array-like object that must be 1-dim, contiguous, and byte dtype.

Returns:

  • New buffer representing `array_like`
Source code in zarr/core/buffer/core.py
@classmethod
def from_array_like(cls, array_like: ArrayLike) -> Self:
    """Create a new buffer of an array-like object

    Parameters
    ----------
    array_like
        array-like object that must be 1-dim, contiguous, and byte dtype.

    Returns
    -------
        New buffer representing `array_like`
    """
    return cls(array_like)

from_buffer abstractmethod classmethod

from_buffer(buffer: Buffer) -> Self

Create a new buffer of an existing Buffer

This is useful if you want to ensure that an existing buffer is of the correct subclass of Buffer. E.g., MemoryStore uses this to return a buffer instance of the subclass specified by its BufferPrototype argument.

Typically, this only copies data if the data has to be moved between memory types, such as from host to device memory.

Parameters:

  • buffer (Buffer) –

    buffer object.

Returns:

  • A new buffer representing the content of the input buffer
Notes

Subclasses of Buffer must override this method to implement more optimal conversions that avoid copies where possible

Source code in zarr/core/buffer/core.py
@classmethod
@abstractmethod
def from_buffer(cls, buffer: Buffer) -> Self:
    """Create a new buffer of an existing Buffer

    This is useful if you want to ensure that an existing buffer is
    of the correct subclass of Buffer. E.g., MemoryStore uses this
    to return a buffer instance of the subclass specified by its
    BufferPrototype argument.

    Typically, this only copies data if the data has to be moved between
    memory types, such as from host to device memory.

    Parameters
    ----------
    buffer
        buffer object.

    Returns
    -------
        A new buffer representing the content of the input buffer

    Notes
    -----
    Subclasses of `Buffer` must override this method to implement
    more optimal conversions that avoid copies where possible
    """
    if cls is Buffer:
        raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
    return cls(
        cast("ArrayLike", None)
    )  # This line will never be reached, but it satisfies the type checker

from_bytes abstractmethod classmethod

from_bytes(bytes_like: BytesLike) -> Self

Create a new buffer of a bytes-like object (host memory)

Parameters:

  • bytes_like (BytesLike) –

    bytes-like object

Returns:

  • New buffer representing `bytes_like`
Source code in zarr/core/buffer/core.py
@classmethod
@abstractmethod
def from_bytes(cls, bytes_like: BytesLike) -> Self:
    """Create a new buffer of a bytes-like object (host memory)

    Parameters
    ----------
    bytes_like
        bytes-like object

    Returns
    -------
        New buffer representing `bytes_like`
    """
    if cls is Buffer:
        raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
    return cls(
        cast("ArrayLike", None)
    )  # This line will never be reached, but it satisfies the type checker

to_bytes

to_bytes() -> bytes

Returns the buffer as bytes (host memory).

Warnings

Will always copy data, only use this method for small buffers such as metadata buffers. If possible, use .as_numpy_array() or .as_array_like() instead.

Returns:

  • `bytes` of this buffer (data copy)
Source code in zarr/core/buffer/core.py
def to_bytes(self) -> bytes:
    """Returns the buffer as `bytes` (host memory).

    Warnings
    --------
    Will always copy data, only use this method for small buffers such as metadata
    buffers. If possible, use `.as_numpy_array()` or `.as_array_like()` instead.

    Returns
    -------
        `bytes` of this buffer (data copy)
    """
    return bytes(self.as_numpy_array())

BufferPrototype

Bases: NamedTuple

Prototype of the Buffer and NDBuffer class

The protocol must be pickable.

Attributes:

  • buffer (type[Buffer]) –

    The Buffer class to use when Zarr needs to create new Buffer.

  • nd_buffer (type[NDBuffer]) –

    The NDBuffer class to use when Zarr needs to create new NDBuffer.

Source code in zarr/core/buffer/core.py
class BufferPrototype(NamedTuple):
    """Prototype of the Buffer and NDBuffer class

    The protocol must be pickable.

    Attributes
    ----------
    buffer
        The Buffer class to use when Zarr needs to create new Buffer.
    nd_buffer
        The NDBuffer class to use when Zarr needs to create new NDBuffer.
    """

    buffer: type[Buffer]
    nd_buffer: type[NDBuffer]

NDArrayLike

Bases: Protocol

Protocol for the nd-array-like type that underlie NDBuffer

Source code in zarr/core/buffer/core.py
@runtime_checkable
class NDArrayLike(Protocol):
    """Protocol for the nd-array-like type that underlie NDBuffer"""

    @property
    def dtype(self) -> np.dtype[Any]: ...

    @property
    def ndim(self) -> int: ...

    @property
    def size(self) -> int: ...

    @property
    def shape(self) -> tuple[int, ...]: ...

    def __len__(self) -> int: ...

    def __getitem__(self, key: slice) -> Self: ...

    def __setitem__(self, key: slice, value: Any) -> None: ...

    def __array__(self) -> npt.NDArray[Any]: ...

    def reshape(
        self, shape: tuple[int, ...] | Literal[-1], *, order: Literal["A", "C", "F"] = ...
    ) -> Self: ...

    def view(self, dtype: npt.DTypeLike) -> Self: ...

    def astype(
        self,
        dtype: npt.DTypeLike,
        order: Literal["K", "A", "C", "F"] = ...,
        *,
        copy: bool = ...,
    ) -> Self: ...

    def fill(self, value: Any) -> None: ...

    def copy(self) -> Self: ...

    def transpose(self, axes: SupportsIndex | Sequence[SupportsIndex] | None) -> Self: ...

    def ravel(self, order: Literal["K", "A", "C", "F"] = ...) -> Self: ...

    def all(self) -> bool: ...

    def __eq__(self, other: object) -> Self:  # type: ignore[override]
        """Element-wise equal

        Notes
        -----
        Type checkers such as mypy complains because the return type isn't a bool like
        its supertype "object", which violates the Liskov substitution principle.
        This is true, but since NumPy's ndarray is defined as an element-wise equal,
        our hands are tied.
        """

__eq__

__eq__(other: object) -> Self

Element-wise equal

Notes

Type checkers such as mypy complains because the return type isn't a bool like its supertype "object", which violates the Liskov substitution principle. This is true, but since NumPy's ndarray is defined as an element-wise equal, our hands are tied.

Source code in zarr/core/buffer/core.py
def __eq__(self, other: object) -> Self:  # type: ignore[override]
    """Element-wise equal

    Notes
    -----
    Type checkers such as mypy complains because the return type isn't a bool like
    its supertype "object", which violates the Liskov substitution principle.
    This is true, but since NumPy's ndarray is defined as an element-wise equal,
    our hands are tied.
    """

NDBuffer

An n-dimensional memory block

We use NDBuffer throughout Zarr to represent a n-dimensional memory block.

A NDBuffer is backed by a underlying ndarray-like instance that represents the memory. The memory type is unspecified; can be regular host memory, CUDA device memory, or something else. The only requirement is that the ndarray-like instance can be copied/converted to a regular Numpy array (host memory).

Notes

The two buffer classes Buffer and NDBuffer are very similar. In fact, Buffer is a special case of NDBuffer where dim=1, stride=1, and dtype="B". However, in order to use Python's type system to differentiate between the contiguous Buffer and the n-dim (non-contiguous) NDBuffer, we keep the definition of the two classes separate.

Parameters:

  • array (ndarray_like) –

    ndarray-like object that is convertible to a regular Numpy array.

Source code in zarr/core/buffer/core.py
class NDBuffer:
    """An n-dimensional memory block

    We use NDBuffer throughout Zarr to represent a n-dimensional memory block.

    A NDBuffer is backed by a underlying ndarray-like instance that represents
    the memory. The memory type is unspecified; can be regular host memory,
    CUDA device memory, or something else. The only requirement is that the
    ndarray-like instance can be copied/converted to a regular Numpy array
    (host memory).

    Notes
    -----
    The two buffer classes Buffer and NDBuffer are very similar. In fact, Buffer
    is a special case of NDBuffer where dim=1, stride=1, and dtype="B". However,
    in order to use Python's type system to differentiate between the contiguous
    Buffer and the n-dim (non-contiguous) NDBuffer, we keep the definition of the
    two classes separate.

    Parameters
    ----------
    array : ndarray_like
        ndarray-like object that is convertible to a regular Numpy array.
    """

    def __init__(self, array: NDArrayLike) -> None:
        self._data = array

    @classmethod
    @abstractmethod
    def create(
        cls,
        *,
        shape: Iterable[int],
        dtype: npt.DTypeLike,
        order: Literal["C", "F"] = "C",
        fill_value: Any | None = None,
    ) -> Self:
        """Create a new buffer and its underlying ndarray-like object

        Parameters
        ----------
        shape
            The shape of the buffer and its underlying ndarray-like object
        dtype
            The datatype of the buffer and its underlying ndarray-like object
        order
            Whether to store multi-dimensional data in row-major (C-style) or
            column-major (Fortran-style) order in memory.
        fill_value
            If not None, fill the new buffer with a scalar value.

        Returns
        -------
            New buffer representing a new ndarray_like object

        Notes
        -----
        A subclass can overwrite this method to create a ndarray-like object
        other then the default Numpy array.
        """
        if cls is NDBuffer:
            raise NotImplementedError(
                "Cannot call abstract method on the abstract class 'NDBuffer'"
            )
        return cls(
            cast("NDArrayLike", None)
        )  # This line will never be reached, but it satisfies the type checker

    @classmethod
    def empty(
        cls, shape: tuple[int, ...], dtype: npt.DTypeLike, order: Literal["C", "F"] = "C"
    ) -> Self:
        """
        Create an empty buffer with the given shape, dtype, and order.

        This method can be faster than ``NDBuffer.create`` because it doesn't
        have to initialize the memory used by the underlying ndarray-like
        object.

        Parameters
        ----------
        shape
            The shape of the buffer and its underlying ndarray-like object
        dtype
            The datatype of the buffer and its underlying ndarray-like object
        order
            Whether to store multi-dimensional data in row-major (C-style) or
            column-major (Fortran-style) order in memory.

        Returns
        -------
        buffer
            New buffer representing a new ndarray_like object with empty data.

        See Also
        --------
        NDBuffer.create
            Create a new buffer with some initial fill value.
        """
        # Implementations should override this method if they have a faster way
        # to allocate an empty buffer.
        return cls.create(shape=shape, dtype=dtype, order=order)

    @classmethod
    def from_ndarray_like(cls, ndarray_like: NDArrayLike) -> Self:
        """Create a new buffer of a ndarray-like object

        Parameters
        ----------
        ndarray_like
            ndarray-like object

        Returns
        -------
            New buffer representing `ndarray_like`
        """
        return cls(ndarray_like)

    @classmethod
    @abstractmethod
    def from_numpy_array(cls, array_like: npt.ArrayLike) -> Self:
        """Create a new buffer of Numpy array-like object

        Parameters
        ----------
        array_like
            Object that can be coerced into a Numpy array

        Returns
        -------
            New buffer representing `array_like`
        """
        if cls is NDBuffer:
            raise NotImplementedError(
                "Cannot call abstract method on the abstract class 'NDBuffer'"
            )
        return cls(
            cast("NDArrayLike", None)
        )  # This line will never be reached, but it satisfies the type checker

    def as_ndarray_like(self) -> NDArrayLike:
        """Returns the underlying array (host or device memory) of this buffer

        This will never copy data.

        Returns
        -------
            The underlying array such as a NumPy or CuPy array.
        """
        return self._data

    @abstractmethod
    def as_numpy_array(self) -> npt.NDArray[Any]:
        """Returns the buffer as a NumPy array (host memory).

        Warnings
        --------
        Might have to copy data, consider using `.as_ndarray_like()` instead.

        Returns
        -------
            NumPy array of this buffer (might be a data copy)
        """
        ...

    def as_scalar(self) -> ScalarType:
        """Returns the buffer as a scalar value"""
        if self._data.size != 1:
            raise ValueError("Buffer does not contain a single scalar value")
        return cast("ScalarType", self.as_numpy_array()[()])

    @property
    def dtype(self) -> np.dtype[Any]:
        return self._data.dtype

    @property
    def shape(self) -> tuple[int, ...]:
        return self._data.shape

    @property
    def byteorder(self) -> Endian:
        from zarr.codecs.bytes import Endian

        if self.dtype.byteorder == "<":
            return Endian.little
        elif self.dtype.byteorder == ">":
            return Endian.big
        else:
            return Endian(sys.byteorder)

    def reshape(self, newshape: tuple[int, ...] | Literal[-1]) -> Self:
        return self.__class__(self._data.reshape(newshape))

    def squeeze(self, axis: tuple[int, ...]) -> Self:
        newshape = tuple(a for i, a in enumerate(self.shape) if i not in axis)
        return self.__class__(self._data.reshape(newshape))

    def astype(self, dtype: npt.DTypeLike, order: Literal["K", "A", "C", "F"] = "K") -> Self:
        return self.__class__(self._data.astype(dtype=dtype, order=order))

    @abstractmethod
    def __getitem__(self, key: Any) -> Self: ...

    @abstractmethod
    def __setitem__(self, key: Any, value: Any) -> None: ...

    def __len__(self) -> int:
        return self._data.__len__()

    def __repr__(self) -> str:
        return f"<NDBuffer shape={self.shape} dtype={self.dtype} {self._data!r}>"

    def all_equal(self, other: Any, equal_nan: bool = True) -> bool:
        """Compare to `other` using np.array_equal."""
        if other is None:
            # Handle None fill_value for Zarr V2
            return False
        # Handle positive and negative zero by comparing bit patterns:
        if (
            np.asarray(other).dtype.kind == "f"
            and other == 0.0
            and self._data.dtype.kind not in ("U", "S", "T", "O", "V")
        ):
            _data, other = np.broadcast_arrays(self._data, np.asarray(other, self._data.dtype))
            void_dtype = "V" + str(_data.dtype.itemsize)
            return np.array_equal(_data.view(void_dtype), other.view(void_dtype))
        # use array_equal to obtain equal_nan=True functionality
        # Since fill-value is a scalar, isn't there a faster path than allocating a new array for fill value
        # every single time we have to write data?
        _data, other = np.broadcast_arrays(self._data, other)
        return np.array_equal(
            self._data,
            other,
            equal_nan=equal_nan
            if self._data.dtype.kind not in ("U", "S", "T", "O", "V")
            else False,
        )

    def fill(self, value: Any) -> None:
        self._data.fill(value)

    def copy(self) -> Self:
        return self.__class__(self._data.copy())

    def transpose(self, axes: SupportsIndex | Sequence[SupportsIndex] | None) -> Self:
        return self.__class__(self._data.transpose(axes))

all_equal

all_equal(other: Any, equal_nan: bool = True) -> bool

Compare to other using np.array_equal.

Source code in zarr/core/buffer/core.py
def all_equal(self, other: Any, equal_nan: bool = True) -> bool:
    """Compare to `other` using np.array_equal."""
    if other is None:
        # Handle None fill_value for Zarr V2
        return False
    # Handle positive and negative zero by comparing bit patterns:
    if (
        np.asarray(other).dtype.kind == "f"
        and other == 0.0
        and self._data.dtype.kind not in ("U", "S", "T", "O", "V")
    ):
        _data, other = np.broadcast_arrays(self._data, np.asarray(other, self._data.dtype))
        void_dtype = "V" + str(_data.dtype.itemsize)
        return np.array_equal(_data.view(void_dtype), other.view(void_dtype))
    # use array_equal to obtain equal_nan=True functionality
    # Since fill-value is a scalar, isn't there a faster path than allocating a new array for fill value
    # every single time we have to write data?
    _data, other = np.broadcast_arrays(self._data, other)
    return np.array_equal(
        self._data,
        other,
        equal_nan=equal_nan
        if self._data.dtype.kind not in ("U", "S", "T", "O", "V")
        else False,
    )

as_ndarray_like

as_ndarray_like() -> NDArrayLike

Returns the underlying array (host or device memory) of this buffer

This will never copy data.

Returns:

  • The underlying array such as a NumPy or CuPy array.
Source code in zarr/core/buffer/core.py
def as_ndarray_like(self) -> NDArrayLike:
    """Returns the underlying array (host or device memory) of this buffer

    This will never copy data.

    Returns
    -------
        The underlying array such as a NumPy or CuPy array.
    """
    return self._data

as_numpy_array abstractmethod

as_numpy_array() -> NDArray[Any]

Returns the buffer as a NumPy array (host memory).

Warnings

Might have to copy data, consider using .as_ndarray_like() instead.

Returns:

  • NumPy array of this buffer (might be a data copy)
Source code in zarr/core/buffer/core.py
@abstractmethod
def as_numpy_array(self) -> npt.NDArray[Any]:
    """Returns the buffer as a NumPy array (host memory).

    Warnings
    --------
    Might have to copy data, consider using `.as_ndarray_like()` instead.

    Returns
    -------
        NumPy array of this buffer (might be a data copy)
    """
    ...

as_scalar

as_scalar() -> ScalarType

Returns the buffer as a scalar value

Source code in zarr/core/buffer/core.py
def as_scalar(self) -> ScalarType:
    """Returns the buffer as a scalar value"""
    if self._data.size != 1:
        raise ValueError("Buffer does not contain a single scalar value")
    return cast("ScalarType", self.as_numpy_array()[()])

create abstractmethod classmethod

create(
    *,
    shape: Iterable[int],
    dtype: DTypeLike,
    order: Literal["C", "F"] = "C",
    fill_value: Any | None = None,
) -> Self

Create a new buffer and its underlying ndarray-like object

Parameters:

  • shape (Iterable[int]) –

    The shape of the buffer and its underlying ndarray-like object

  • dtype (DTypeLike) –

    The datatype of the buffer and its underlying ndarray-like object

  • order (Literal['C', 'F'], default: 'C' ) –

    Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

  • fill_value (Any | None, default: None ) –

    If not None, fill the new buffer with a scalar value.

Returns:

  • New buffer representing a new ndarray_like object
Notes

A subclass can overwrite this method to create a ndarray-like object other then the default Numpy array.

Source code in zarr/core/buffer/core.py
@classmethod
@abstractmethod
def create(
    cls,
    *,
    shape: Iterable[int],
    dtype: npt.DTypeLike,
    order: Literal["C", "F"] = "C",
    fill_value: Any | None = None,
) -> Self:
    """Create a new buffer and its underlying ndarray-like object

    Parameters
    ----------
    shape
        The shape of the buffer and its underlying ndarray-like object
    dtype
        The datatype of the buffer and its underlying ndarray-like object
    order
        Whether to store multi-dimensional data in row-major (C-style) or
        column-major (Fortran-style) order in memory.
    fill_value
        If not None, fill the new buffer with a scalar value.

    Returns
    -------
        New buffer representing a new ndarray_like object

    Notes
    -----
    A subclass can overwrite this method to create a ndarray-like object
    other then the default Numpy array.
    """
    if cls is NDBuffer:
        raise NotImplementedError(
            "Cannot call abstract method on the abstract class 'NDBuffer'"
        )
    return cls(
        cast("NDArrayLike", None)
    )  # This line will never be reached, but it satisfies the type checker

empty classmethod

empty(
    shape: tuple[int, ...],
    dtype: DTypeLike,
    order: Literal["C", "F"] = "C",
) -> Self

Create an empty buffer with the given shape, dtype, and order.

This method can be faster than NDBuffer.create because it doesn't have to initialize the memory used by the underlying ndarray-like object.

Parameters:

  • shape (tuple[int, ...]) –

    The shape of the buffer and its underlying ndarray-like object

  • dtype (DTypeLike) –

    The datatype of the buffer and its underlying ndarray-like object

  • order (Literal['C', 'F'], default: 'C' ) –

    Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

Returns:

  • buffer

    New buffer representing a new ndarray_like object with empty data.

See Also

NDBuffer.create Create a new buffer with some initial fill value.

Source code in zarr/core/buffer/core.py
@classmethod
def empty(
    cls, shape: tuple[int, ...], dtype: npt.DTypeLike, order: Literal["C", "F"] = "C"
) -> Self:
    """
    Create an empty buffer with the given shape, dtype, and order.

    This method can be faster than ``NDBuffer.create`` because it doesn't
    have to initialize the memory used by the underlying ndarray-like
    object.

    Parameters
    ----------
    shape
        The shape of the buffer and its underlying ndarray-like object
    dtype
        The datatype of the buffer and its underlying ndarray-like object
    order
        Whether to store multi-dimensional data in row-major (C-style) or
        column-major (Fortran-style) order in memory.

    Returns
    -------
    buffer
        New buffer representing a new ndarray_like object with empty data.

    See Also
    --------
    NDBuffer.create
        Create a new buffer with some initial fill value.
    """
    # Implementations should override this method if they have a faster way
    # to allocate an empty buffer.
    return cls.create(shape=shape, dtype=dtype, order=order)

from_ndarray_like classmethod

from_ndarray_like(ndarray_like: NDArrayLike) -> Self

Create a new buffer of a ndarray-like object

Parameters:

Returns:

  • New buffer representing `ndarray_like`
Source code in zarr/core/buffer/core.py
@classmethod
def from_ndarray_like(cls, ndarray_like: NDArrayLike) -> Self:
    """Create a new buffer of a ndarray-like object

    Parameters
    ----------
    ndarray_like
        ndarray-like object

    Returns
    -------
        New buffer representing `ndarray_like`
    """
    return cls(ndarray_like)

from_numpy_array abstractmethod classmethod

from_numpy_array(array_like: ArrayLike) -> Self

Create a new buffer of Numpy array-like object

Parameters:

  • array_like (ArrayLike) –

    Object that can be coerced into a Numpy array

Returns:

  • New buffer representing `array_like`
Source code in zarr/core/buffer/core.py
@classmethod
@abstractmethod
def from_numpy_array(cls, array_like: npt.ArrayLike) -> Self:
    """Create a new buffer of Numpy array-like object

    Parameters
    ----------
    array_like
        Object that can be coerced into a Numpy array

    Returns
    -------
        New buffer representing `array_like`
    """
    if cls is NDBuffer:
        raise NotImplementedError(
            "Cannot call abstract method on the abstract class 'NDBuffer'"
        )
    return cls(
        cast("NDArrayLike", None)
    )  # This line will never be reached, but it satisfies the type checker