Skip to content

Array

zarr.Array dataclass

A Zarr array.

Source code in zarr/core/array.py
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
@dataclass(frozen=False)
class Array:
    """
    A Zarr array.
    """

    _async_array: AsyncArray[ArrayV3Metadata] | AsyncArray[ArrayV2Metadata]

    @classmethod
    @deprecated("Use zarr.create_array instead.", category=ZarrDeprecationWarning)
    def create(
        cls,
        store: StoreLike,
        *,
        # v2 and v3
        shape: tuple[int, ...],
        dtype: ZDTypeLike,
        zarr_format: ZarrFormat = 3,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        attributes: dict[str, JSON] | None = None,
        # v3 only
        chunk_shape: tuple[int, ...] | None = None,
        chunk_key_encoding: (
            ChunkKeyEncoding
            | tuple[Literal["default"], Literal[".", "/"]]
            | tuple[Literal["v2"], Literal[".", "/"]]
            | None
        ) = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        # v2 only
        chunks: tuple[int, ...] | None = None,
        dimension_separator: Literal[".", "/"] | None = None,
        order: MemoryOrder | None = None,
        filters: list[dict[str, JSON]] | None = None,
        compressor: CompressorLike = "auto",
        # runtime
        overwrite: bool = False,
        config: ArrayConfigLike | None = None,
    ) -> Array:
        """Creates a new Array instance from an initialized store.

        !!! warning "Deprecated"
            `Array.create()` is deprecated since v3.0.0 and will be removed in a future release.
            Use [`zarr.create_array`][] instead.

        Parameters
        ----------
        store : StoreLike
            The array store that has already been initialized.
        shape : tuple[int, ...]
            The shape of the array.
        dtype : ZDTypeLike
            The data type of the array.
        chunk_shape : tuple[int, ...], optional
            The shape of the Array's chunks.
            Zarr format 3 only. Zarr format 2 arrays should use `chunks` instead.
            If not specified, default are guessed based on the shape and dtype.
        chunk_key_encoding : ChunkKeyEncodingLike, optional
            A specification of how the chunk keys are represented in storage.
            Zarr format 3 only. Zarr format 2 arrays should use `dimension_separator` instead.
            Default is ``("default", "/")``.
        codecs : Sequence of Codecs or dicts, optional
            An iterable of Codec or dict serializations of Codecs. The elements of
            this collection specify the transformation from array values to stored bytes.
            Zarr format 3 only. Zarr format 2 arrays should use ``filters`` and ``compressor`` instead.

            If no codecs are provided, default codecs will be used:

            - For numeric arrays, the default is ``BytesCodec`` and ``ZstdCodec``.
            - For Unicode strings, the default is ``VLenUTF8Codec`` and ``ZstdCodec``.
            - For bytes or objects, the default is ``VLenBytesCodec`` and ``ZstdCodec``.
        dimension_names : Iterable[str | None], optional
            The names of the dimensions (default is None).
            Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
        chunks : tuple[int, ...], optional
            The shape of the array's chunks.
            Zarr format 2 only. Zarr format 3 arrays should use ``chunk_shape`` instead.
            If not specified, default are guessed based on the shape and dtype.
        dimension_separator : Literal[".", "/"], optional
            The dimension separator (default is ".").
            Zarr format 2 only. Zarr format 3 arrays should use ``chunk_key_encoding`` instead.
        order : Literal["C", "F"], optional
            The memory of the array (default is "C").
            If ``zarr_format`` is 2, this parameter sets the memory order of the array.
            If ``zarr_format`` is 3, then this parameter is deprecated, because memory order
            is a runtime parameter for Zarr 3 arrays. The recommended way to specify the memory
            order for Zarr 3 arrays is via the ``config`` parameter, e.g. ``{'order': 'C'}``.

        filters : Iterable[Codec] | Literal["auto"], optional
            Iterable of filters to apply to each chunk of the array, in order, before serializing that
            chunk to bytes.

            For Zarr format 3, a "filter" is a codec that takes an array and returns an array,
            and these values must be instances of [`zarr.abc.codec.ArrayArrayCodec`][], or a
            dict representations of [`zarr.abc.codec.ArrayArrayCodec`][].

            For Zarr format 2, a "filter" can be any numcodecs codec; you should ensure that the
            the order if your filters is consistent with the behavior of each filter.

            The default value of ``"auto"`` instructs Zarr to use a default used based on the data
            type of the array and the Zarr format specified. For all data types in Zarr V3, and most
            data types in Zarr V2, the default filters are empty. The only cases where default filters
            are not empty is when the Zarr format is 2, and the data type is a variable-length data type like
            [`zarr.dtype.VariableLengthUTF8`][] or [`zarr.dtype.VariableLengthUTF8`][]. In these cases,
            the default filters contains a single element which is a codec specific to that particular data type.

            To create an array with no filters, provide an empty iterable or the value ``None``.
        compressor : dict[str, JSON], optional
            Primary compressor to compress chunk data.
            Zarr format 2 only. Zarr format 3 arrays should use ``codecs`` instead.

            If no ``compressor`` is provided, a default compressor will be used:

            - For numeric arrays, the default is ``ZstdCodec``.
            - For Unicode strings, the default is ``VLenUTF8Codec``.
            - For bytes or objects, the default is ``VLenBytesCodec``.

            These defaults can be changed by modifying the value of ``array.v2_default_compressor`` in [`zarr.config`][zarr.config].
        overwrite : bool, optional
            Whether to raise an error if the store already exists (default is False).

        Returns
        -------
        Array
            Array created from the store.
        """
        return cls._create(
            store,
            # v2 and v3
            shape=shape,
            dtype=dtype,
            zarr_format=zarr_format,
            attributes=attributes,
            fill_value=fill_value,
            # v3 only
            chunk_shape=chunk_shape,
            chunk_key_encoding=chunk_key_encoding,
            codecs=codecs,
            dimension_names=dimension_names,
            # v2 only
            chunks=chunks,
            dimension_separator=dimension_separator,
            order=order,
            filters=filters,
            compressor=compressor,
            # runtime
            overwrite=overwrite,
            config=config,
        )

    @classmethod
    def _create(
        cls,
        store: StoreLike,
        *,
        # v2 and v3
        shape: tuple[int, ...],
        dtype: ZDTypeLike,
        zarr_format: ZarrFormat = 3,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        attributes: dict[str, JSON] | None = None,
        # v3 only
        chunk_shape: tuple[int, ...] | None = None,
        chunk_key_encoding: (
            ChunkKeyEncoding
            | tuple[Literal["default"], Literal[".", "/"]]
            | tuple[Literal["v2"], Literal[".", "/"]]
            | None
        ) = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        # v2 only
        chunks: tuple[int, ...] | None = None,
        dimension_separator: Literal[".", "/"] | None = None,
        order: MemoryOrder | None = None,
        filters: list[dict[str, JSON]] | None = None,
        compressor: CompressorLike = "auto",
        # runtime
        overwrite: bool = False,
        config: ArrayConfigLike | None = None,
    ) -> Array:
        """Creates a new Array instance from an initialized store.
        Deprecated in favor of [`zarr.create_array`][].
        """
        async_array = sync(
            AsyncArray._create(
                store=store,
                shape=shape,
                dtype=dtype,
                zarr_format=zarr_format,
                attributes=attributes,
                fill_value=fill_value,
                chunk_shape=chunk_shape,
                chunk_key_encoding=chunk_key_encoding,
                codecs=codecs,
                dimension_names=dimension_names,
                chunks=chunks,
                dimension_separator=dimension_separator,
                order=order,
                filters=filters,
                compressor=compressor,
                overwrite=overwrite,
                config=config,
            ),
        )
        return cls(async_array)

    @classmethod
    def from_dict(
        cls,
        store_path: StorePath,
        data: dict[str, JSON],
    ) -> Array:
        """
        Create a Zarr array from a dictionary.

        Parameters
        ----------
        store_path : StorePath
            The path within the store where the array should be created.

        data : dict
            A dictionary representing the array data. This dictionary should include necessary metadata
            for the array, such as shape, dtype, fill value, and attributes.

        Returns
        -------
        Array
            The created Zarr array.

        Raises
        ------
        ValueError
            If the dictionary data is invalid or missing required fields for array creation.
        """
        async_array = AsyncArray.from_dict(store_path=store_path, data=data)
        return cls(async_array)

    @classmethod
    def open(
        cls,
        store: StoreLike,
    ) -> Array:
        """Opens an existing Array from a store.

        Parameters
        ----------
        store : StoreLike
            Store containing the Array.

        Returns
        -------
        Array
            Array opened from the store.
        """
        async_array = sync(AsyncArray.open(store))
        return cls(async_array)

    @property
    def store(self) -> Store:
        return self._async_array.store

    @property
    def ndim(self) -> int:
        """Returns the number of dimensions in the array.

        Returns
        -------
        int
            The number of dimensions in the array.
        """
        return self._async_array.ndim

    @property
    def shape(self) -> tuple[int, ...]:
        """Returns the shape of the array.

        Returns
        -------
        tuple[int, ...]
            The shape of the array.
        """
        return self._async_array.shape

    @shape.setter
    def shape(self, value: tuple[int, ...]) -> None:
        """Sets the shape of the array by calling resize."""
        self.resize(value)

    @property
    def chunks(self) -> tuple[int, ...]:
        """Returns a tuple of integers describing the length of each dimension of a chunk of the array.
        If sharding is used the inner chunk shape is returned.

        Only defined for arrays using using `RegularChunkGrid`.
        If array doesn't use `RegularChunkGrid`, `NotImplementedError` is raised.

        Returns
        -------
        tuple
            A tuple of integers representing the length of each dimension of a chunk.
        """
        return self._async_array.chunks

    @property
    def shards(self) -> tuple[int, ...] | None:
        """Returns a tuple of integers describing the length of each dimension of a shard of the array.
        Returns None if sharding is not used.

        Only defined for arrays using using `RegularChunkGrid`.
        If array doesn't use `RegularChunkGrid`, `NotImplementedError` is raised.

        Returns
        -------
        tuple | None
            A tuple of integers representing the length of each dimension of a shard or None if sharding is not used.
        """
        return self._async_array.shards

    @property
    def size(self) -> int:
        """Returns the total number of elements in the array.

        Returns
        -------
        int
            Total number of elements in the array.
        """
        return self._async_array.size

    @property
    def dtype(self) -> np.dtype[Any]:
        """Returns the NumPy data type.

        Returns
        -------
        np.dtype
            The NumPy data type.
        """
        return self._async_array.dtype

    @property
    def attrs(self) -> Attributes:
        """Returns a [MutableMapping][collections.abc.MutableMapping] containing user-defined attributes.

        Returns
        -------
        attrs
            A [MutableMapping][collections.abc.MutableMapping] object containing user-defined attributes.

        Notes
        -----
        Note that attribute values must be JSON serializable.
        """
        return Attributes(self)

    @property
    def path(self) -> str:
        """Storage path."""
        return self._async_array.path

    @property
    def name(self) -> str:
        """Array name following h5py convention."""
        return self._async_array.name

    @property
    def basename(self) -> str:
        """Final component of name."""
        return self._async_array.basename

    @property
    def metadata(self) -> ArrayMetadata:
        return self._async_array.metadata

    @property
    def store_path(self) -> StorePath:
        return self._async_array.store_path

    @property
    def order(self) -> MemoryOrder:
        return self._async_array.order

    @property
    def read_only(self) -> bool:
        return self._async_array.read_only

    @property
    def fill_value(self) -> Any:
        return self.metadata.fill_value

    @property
    def filters(self) -> tuple[Numcodec, ...] | tuple[ArrayArrayCodec, ...]:
        """
        Filters that are applied to each chunk of the array, in order, before serializing that
        chunk to bytes.
        """
        return self._async_array.filters

    @property
    def serializer(self) -> None | ArrayBytesCodec:
        """
        Array-to-bytes codec to use for serializing the chunks into bytes.
        """
        return self._async_array.serializer

    @property
    @deprecated("Use Array.compressors instead.", category=ZarrDeprecationWarning)
    def compressor(self) -> Numcodec | None:
        """
        Compressor that is applied to each chunk of the array.

        !!! warning "Deprecated"
            `array.compressor` is deprecated since v3.0.0 and will be removed in a future release.
            Use [`array.compressors`][zarr.Array.compressors] instead.
        """
        return self._async_array.compressor

    @property
    def compressors(self) -> tuple[Numcodec, ...] | tuple[BytesBytesCodec, ...]:
        """
        Compressors that are applied to each chunk of the array. Compressors are applied in order, and after any
        filters are applied (if any are specified) and the data is serialized into bytes.
        """
        return self._async_array.compressors

    @property
    def cdata_shape(self) -> tuple[int, ...]:
        """
        The shape of the chunk grid for this array.
        """
        return self._async_array._chunk_grid_shape

    @property
    def _chunk_grid_shape(self) -> tuple[int, ...]:
        """
        The shape of the chunk grid for this array.
        """
        return self._async_array._chunk_grid_shape

    @property
    def _shard_grid_shape(self) -> tuple[int, ...]:
        """
        The shape of the shard grid for this array.
        """
        return self._async_array._shard_grid_shape

    @property
    def nchunks(self) -> int:
        """
        The number of chunks in this array.

        Note that if a sharding codec is used, then the number of chunks may exceed the number of
        stored objects supporting this array.
        """
        return self._async_array.nchunks

    @property
    def _nshards(self) -> int:
        """
        The number of shards in the stored representation of this array.
        """
        return self._async_array._nshards

    @property
    def nbytes(self) -> int:
        """
        The total number of bytes that can be stored in the chunks of this array.

        Notes
        -----
        This value is calculated by multiplying the number of elements in the array and the size
        of each element, the latter of which is determined by the dtype of the array.
        For this reason, ``nbytes`` will likely be inaccurate for arrays with variable-length
        dtypes. It is not possible to determine the size of an array with variable-length elements
        from the shape and dtype alone.
        """
        return self._async_array.nbytes

    @property
    def nchunks_initialized(self) -> int:
        """
        Calculate the number of chunks that have been initialized in storage.

        This value is calculated as the product of the number of initialized shards and the number of
        chunks per shard. For arrays that do not use sharding, the number of chunks per shard is effectively 1,
        and in that case the number of chunks initialized is the same as the number of stored objects associated with an
        array. For a direct count of the number of initialized stored objects, see ``nshards_initialized``.

        Returns
        -------
        nchunks_initialized : int
            The number of chunks that have been initialized.

        Examples
        --------
        >>> arr = zarr.create_array(store={}, shape=(10,), chunks=(1,), shards=(2,))
        >>> arr.nchunks_initialized
        0
        >>> arr[:5] = 1
        >>> arr.nchunks_initialized
        6
        """
        return sync(self._async_array.nchunks_initialized())

    @property
    def _nshards_initialized(self) -> int:
        """
        Calculate the number of shards that have been initialized, i.e. the number of shards that have
        been persisted to the storage backend.

        Returns
        -------
        nshards_initialized : int
            The number of shards that have been initialized.

        Examples
        --------
        >>> arr = await zarr.create(shape=(10,), chunks=(2,))
        >>> arr._nshards_initialized
        0
        >>> arr[:5] = 1
        >>> arr._nshard_initialized
        3
        """
        return sync(self._async_array._nshards_initialized())

    def nbytes_stored(self) -> int:
        """
        Determine the size, in bytes, of the array actually written to the store.

        Returns
        -------
        size : int
        """
        return sync(self._async_array.nbytes_stored())

    def _iter_shard_keys(
        self, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[str]:
        """
        Iterate over the storage keys of each shard, relative to an optional origin, and optionally
        limited to a contiguous region in chunk grid coordinates.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's shard grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in shard grid coordinates.

        Yields
        ------
        str
            The storage key of each shard in the selection.
        """
        return self._async_array._iter_shard_keys(origin=origin, selection_shape=selection_shape)

    def _iter_chunk_coords(
        self, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[tuple[int, ...]]:
        """
        Create an iterator over the coordinates of chunks in chunk grid space.

        If the `origin` keyword is used, iteration will start at the chunk index specified by `origin`.
        The default behavior is to start at the origin of the grid coordinate space.
        If the `selection_shape` keyword is used, iteration will be bounded over a contiguous region
        ranging from `[origin, origin + selection_shape]`, where the upper bound is exclusive as
        per python indexing conventions.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's chunk grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in chunk grid coordinates.

        Yields
        ------
        tuple[int, ...]
            The coordinates of each chunk in the selection.
        """
        return self._async_array._iter_chunk_coords(origin=origin, selection_shape=selection_shape)

    def _iter_shard_coords(
        self, *, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[tuple[int, ...]]:
        """
        Create an iterator over the coordinates of shards in shard grid space.

        If the `origin` keyword is used, iteration will start at the shard index specified by `origin`.
        The default behavior is to start at the origin of the grid coordinate space.
        If the `selection_shape` keyword is used, iteration will be bounded over a contiguous region
        ranging from `[origin, origin selection_shape]`, where the upper bound is exclusive as
        per python indexing conventions.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's shard grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in shard grid coordinates.

        Yields
        ------
        tuple[int, ...]
            The coordinates of each shard in the selection.
        """
        return self._async_array._iter_shard_coords(origin=origin, selection_shape=selection_shape)

    def _iter_chunk_regions(
        self, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[tuple[slice, ...]]:
        """
        Iterate over the regions spanned by each chunk.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's chunk grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in chunk grid coordinates.

        Yields
        ------
        tuple[slice, ...]
            A tuple of slice objects representing the region spanned by each chunk in the selection.
        """
        return self._async_array._iter_chunk_regions(origin=origin, selection_shape=selection_shape)

    def _iter_shard_regions(
        self, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[tuple[slice, ...]]:
        """
        Iterate over the regions spanned by each shard.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's chunk grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in chunk grid coordinates.

        Yields
        ------
        tuple[slice, ...]
            A tuple of slice objects representing the region spanned by each chunk in the selection.
        """
        return self._async_array._iter_shard_regions(origin=origin, selection_shape=selection_shape)

    def __array__(
        self, dtype: npt.DTypeLike | None = None, copy: bool | None = None
    ) -> NDArrayLike:
        """
        This method is used by numpy when converting zarr.Array into a numpy array.
        For more information, see https://numpy.org/devdocs/user/basics.interoperability.html#the-array-method
        """
        if copy is False:
            msg = "`copy=False` is not supported. This method always creates a copy."
            raise ValueError(msg)

        arr = self[...]
        arr_np: NDArrayLike = np.array(arr, dtype=dtype)

        if dtype is not None:
            arr_np = arr_np.astype(dtype)

        return arr_np

    def __getitem__(self, selection: Selection) -> NDArrayLikeOrScalar:
        """Retrieve data for an item or region of the array.

        Parameters
        ----------
        selection : tuple
            An integer index or slice or tuple of int/slice objects specifying the
            requested item or region for each dimension of the array.

        Returns
        -------
        NDArrayLikeOrScalar
             An array-like or scalar containing the data for the requested region.

        Examples
        --------
        Setup a 1-dimensional array::

            >>> import zarr
            >>> import numpy as np
            >>> data = np.arange(100, dtype="uint16")
            >>> z = zarr.create_array(
            >>>        StorePath(MemoryStore(mode="w")),
            >>>        shape=data.shape,
            >>>        chunks=(10,),
            >>>        dtype=data.dtype,
            >>>        )
            >>> z[:] = data

        Retrieve a single item::

            >>> z[5]
            5

        Retrieve a region via slicing::

            >>> z[:5]
            array([0, 1, 2, 3, 4])
            >>> z[-5:]
            array([95, 96, 97, 98, 99])
            >>> z[5:10]
            array([5, 6, 7, 8, 9])
            >>> z[5:10:2]
            array([5, 7, 9])
            >>> z[::2]
            array([ 0,  2,  4, ..., 94, 96, 98])

        Load the entire array into memory::

            >>> z[...]
            array([ 0,  1,  2, ..., 97, 98, 99])

        Setup a 2-dimensional array::

            >>> data = np.arange(100, dtype="uint16").reshape(10, 10)
            >>> z = zarr.create_array(
            >>>        StorePath(MemoryStore(mode="w")),
            >>>        shape=data.shape,
            >>>        chunks=(10, 10),
            >>>        dtype=data.dtype,
            >>>        )
            >>> z[:] = data

        Retrieve an item::

            >>> z[2, 2]
            22

        Retrieve a region via slicing::

            >>> z[1:3, 1:3]
            array([[11, 12],
                   [21, 22]])
            >>> z[1:3, :]
            array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
                   [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]])
            >>> z[:, 1:3]
            array([[ 1,  2],
                   [11, 12],
                   [21, 22],
                   [31, 32],
                   [41, 42],
                   [51, 52],
                   [61, 62],
                   [71, 72],
                   [81, 82],
                   [91, 92]])
            >>> z[0:5:2, 0:5:2]
            array([[ 0,  2,  4],
                   [20, 22, 24],
                   [40, 42, 44]])
            >>> z[::2, ::2]
            array([[ 0,  2,  4,  6,  8],
                   [20, 22, 24, 26, 28],
                   [40, 42, 44, 46, 48],
                   [60, 62, 64, 66, 68],
                   [80, 82, 84, 86, 88]])

        Load the entire array into memory::

            >>> z[...]
            array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
                   [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
                   [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
                   [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
                   [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
                   [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
                   [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
                   [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
                   [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
                   [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])

        Notes
        -----
        Slices with step > 1 are supported, but slices with negative step are not.

        For arrays with a structured dtype, see Zarr format 2 for examples of how to use
        fields

        Currently the implementation for __getitem__ is provided by
        [`vindex`][zarr.Array.vindex] if the indexing is pure fancy indexing (ie a
        broadcast-compatible tuple of integer array indices), or by
        [`set_basic_selection`][zarr.Array.set_basic_selection] otherwise.

        Effectively, this means that the following indexing modes are supported:

           - integer indexing
           - slice indexing
           - mixed slice and integer indexing
           - boolean indexing
           - fancy indexing (vectorized list of integers)

        For specific indexing options including outer indexing, see the
        methods listed under Related.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection], [set_basic_selection][zarr.Array.set_basic_selection]
        [get_mask_selection][zarr.Array.get_mask_selection], [set_mask_selection][zarr.Array.set_mask_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection], [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection], [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_block_selection][zarr.Array.get_block_selection], [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex], [blocks][zarr.Array.blocks], [__setitem__][zarr.Array.__setitem__]

        """
        fields, pure_selection = pop_fields(selection)
        if is_pure_fancy_indexing(pure_selection, self.ndim):
            return self.vindex[cast("CoordinateSelection | MaskSelection", selection)]
        elif is_pure_orthogonal_indexing(pure_selection, self.ndim):
            return self.get_orthogonal_selection(pure_selection, fields=fields)
        else:
            return self.get_basic_selection(cast("BasicSelection", pure_selection), fields=fields)

    def __setitem__(self, selection: Selection, value: npt.ArrayLike) -> None:
        """Modify data for an item or region of the array.

        Parameters
        ----------
        selection : tuple
            An integer index or slice or tuple of int/slice specifying the requested
            region for each dimension of the array.
        value : npt.ArrayLike
            An array-like containing the data to be stored in the selection.

        Examples
        --------
        Setup a 1-dimensional array::

            >>> import zarr
            >>> z = zarr.zeros(
            >>>        shape=(100,),
            >>>        store=StorePath(MemoryStore(mode="w")),
            >>>        chunk_shape=(5,),
            >>>        dtype="i4",
            >>>       )

        Set all array elements to the same scalar value::

            >>> z[...] = 42
            >>> z[...]
            array([42, 42, 42, ..., 42, 42, 42])

        Set a portion of the array::

            >>> z[:10] = np.arange(10)
            >>> z[-10:] = np.arange(10)[::-1]
            >>> z[...]
            array([ 0, 1, 2, ..., 2, 1, 0])

        Setup a 2-dimensional array::

            >>> z = zarr.zeros(
            >>>        shape=(5, 5),
            >>>        store=StorePath(MemoryStore(mode="w")),
            >>>        chunk_shape=(5, 5),
            >>>        dtype="i4",
            >>>       )

        Set all array elements to the same scalar value::

            >>> z[...] = 42

        Set a portion of the array::

            >>> z[0, :] = np.arange(z.shape[1])
            >>> z[:, 0] = np.arange(z.shape[0])
            >>> z[...]
            array([[ 0,  1,  2,  3,  4],
                   [ 1, 42, 42, 42, 42],
                   [ 2, 42, 42, 42, 42],
                   [ 3, 42, 42, 42, 42],
                   [ 4, 42, 42, 42, 42]])

        Notes
        -----
        Slices with step > 1 are supported, but slices with negative step are not.

        For arrays with a structured dtype, see Zarr format 2 for examples of how to use
        fields

        Currently the implementation for __setitem__ is provided by
        [`vindex`][zarr.Array.vindex] if the indexing is pure fancy indexing (ie a
        broadcast-compatible tuple of integer array indices), or by
        [`set_basic_selection`][zarr.Array.set_basic_selection] otherwise.

        Effectively, this means that the following indexing modes are supported:

            - integer indexing
            - slice indexing
            - mixed slice and integer indexing
            - boolean indexing
            - fancy indexing (vectorized list of integers)

        For specific indexing options including outer indexing, see the
        methods listed under Related.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__]

        """
        fields, pure_selection = pop_fields(selection)
        if is_pure_fancy_indexing(pure_selection, self.ndim):
            self.vindex[cast("CoordinateSelection | MaskSelection", selection)] = value
        elif is_pure_orthogonal_indexing(pure_selection, self.ndim):
            self.set_orthogonal_selection(pure_selection, value, fields=fields)
        else:
            self.set_basic_selection(cast("BasicSelection", pure_selection), value, fields=fields)

    def get_basic_selection(
        self,
        selection: BasicSelection = Ellipsis,
        *,
        out: NDBuffer | None = None,
        prototype: BufferPrototype | None = None,
        fields: Fields | None = None,
    ) -> NDArrayLikeOrScalar:
        """Retrieve data for an item or region of the array.

        Parameters
        ----------
        selection : tuple
            A tuple specifying the requested item or region for each dimension of the
            array. May be any combination of int and/or slice or ellipsis for multidimensional arrays.
        out : NDBuffer, optional
            If given, load the selected data directly into this buffer.
        prototype : BufferPrototype, optional
            The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to
            extract data for.

        Returns
        -------
        NDArrayLikeOrScalar
            An array-like or scalar containing the data for the requested region.

        Examples
        --------
        Setup a 1-dimensional array::

            >>> import zarr
            >>> import numpy as np
            >>> data = np.arange(100, dtype="uint16")
            >>> z = zarr.create_array(
            >>>        StorePath(MemoryStore(mode="w")),
            >>>        shape=data.shape,
            >>>        chunks=(3,),
            >>>        dtype=data.dtype,
            >>>        )
            >>> z[:] = data

        Retrieve a single item::

            >>> z.get_basic_selection(5)
            5

        Retrieve a region via slicing::

            >>> z.get_basic_selection(slice(5))
            array([0, 1, 2, 3, 4])
            >>> z.get_basic_selection(slice(-5, None))
            array([95, 96, 97, 98, 99])
            >>> z.get_basic_selection(slice(5, 10))
            array([5, 6, 7, 8, 9])
            >>> z.get_basic_selection(slice(5, 10, 2))
            array([5, 7, 9])
            >>> z.get_basic_selection(slice(None, None, 2))
            array([  0,  2,  4, ..., 94, 96, 98])

        Setup a 3-dimensional array::

            >>> data = np.arange(1000).reshape(10, 10, 10)
            >>> z = zarr.create_array(
            >>>        StorePath(MemoryStore(mode="w")),
            >>>        shape=data.shape,
            >>>        chunks=(5, 5, 5),
            >>>        dtype=data.dtype,
            >>>        )
            >>> z[:] = data

        Retrieve an item::

            >>> z.get_basic_selection((1, 2, 3))
            123

        Retrieve a region via slicing and Ellipsis::

            >>> z.get_basic_selection((slice(1, 3), slice(1, 3), 0))
            array([[110, 120],
                   [210, 220]])
            >>> z.get_basic_selection(0, (slice(1, 3), slice(None)))
            array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
                   [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]])
            >>> z.get_basic_selection((..., 5))
            array([[  2  12  22  32  42  52  62  72  82  92]
                   [102 112 122 132 142 152 162 172 182 192]
                   ...
                   [802 812 822 832 842 852 862 872 882 892]
                   [902 912 922 932 942 952 962 972 982 992]]

        Notes
        -----
        Slices with step > 1 are supported, but slices with negative step are not.

        For arrays with a structured dtype, see Zarr format 2 for examples of how to use
        the `fields` parameter.

        This method provides the implementation for accessing data via the
        square bracket notation (__getitem__). See [`__getitem__`][zarr.Array.__getitem__] for examples
        using the alternative notation.

        Related
        -------
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]

        """

        if prototype is None:
            prototype = default_buffer_prototype()
        return sync(
            self._async_array._get_selection(
                BasicIndexer(selection, self.shape, self.metadata.chunk_grid),
                out=out,
                fields=fields,
                prototype=prototype,
            )
        )

    def set_basic_selection(
        self,
        selection: BasicSelection,
        value: npt.ArrayLike,
        *,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> None:
        """Modify data for an item or region of the array.

        Parameters
        ----------
        selection : tuple
            A tuple specifying the requested item or region for each dimension of the
            array. May be any combination of int and/or slice or ellipsis for multidimensional arrays.
        value : npt.ArrayLike
            An array-like containing values to be stored into the array.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to set
            data for.
        prototype : BufferPrototype, optional
            The prototype of the buffer used for setting the data. If not provided, the
            default buffer prototype is used.

        Examples
        --------
        Setup a 1-dimensional array::

            >>> import zarr
            >>> z = zarr.zeros(
            >>>        shape=(100,),
            >>>        store=StorePath(MemoryStore(mode="w")),
            >>>        chunk_shape=(100,),
            >>>        dtype="i4",
            >>>       )

        Set all array elements to the same scalar value::

            >>> z.set_basic_selection(..., 42)
            >>> z[...]
            array([42, 42, 42, ..., 42, 42, 42])

        Set a portion of the array::

            >>> z.set_basic_selection(slice(10), np.arange(10))
            >>> z.set_basic_selection(slice(-10, None), np.arange(10)[::-1])
            >>> z[...]
            array([ 0, 1, 2, ..., 2, 1, 0])

        Setup a 2-dimensional array::

            >>> z = zarr.zeros(
            >>>        shape=(5, 5),
            >>>        store=StorePath(MemoryStore(mode="w")),
            >>>        chunk_shape=(5, 5),
            >>>        dtype="i4",
            >>>       )

        Set all array elements to the same scalar value::

            >>> z.set_basic_selection(..., 42)

        Set a portion of the array::

            >>> z.set_basic_selection((0, slice(None)), np.arange(z.shape[1]))
            >>> z.set_basic_selection((slice(None), 0), np.arange(z.shape[0]))
            >>> z[...]
            array([[ 0,  1,  2,  3,  4],
                   [ 1, 42, 42, 42, 42],
                   [ 2, 42, 42, 42, 42],
                   [ 3, 42, 42, 42, 42],
                   [ 4, 42, 42, 42, 42]])

        Notes
        -----
        For arrays with a structured dtype, see Zarr format 2 for examples of how to use
        the `fields` parameter.

        This method provides the underlying implementation for modifying data via square
        bracket notation, see [`__setitem__`][zarr.Array.__setitem__] for equivalent examples using the
        alternative notation.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]

        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = BasicIndexer(selection, self.shape, self.metadata.chunk_grid)
        sync(self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype))

    def get_orthogonal_selection(
        self,
        selection: OrthogonalSelection,
        *,
        out: NDBuffer | None = None,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> NDArrayLikeOrScalar:
        """Retrieve data by making a selection for each dimension of the array. For
        example, if an array has 2 dimensions, allows selecting specific rows and/or
        columns. The selection for each dimension can be either an integer (indexing a
        single item), a slice, an array of integers, or a Boolean array where True
        values indicate a selection.

        Parameters
        ----------
        selection : tuple
            A selection for each dimension of the array. May be any combination of int,
            slice, integer array or Boolean array.
        out : NDBuffer, optional
            If given, load the selected data directly into this buffer.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to
            extract data for.
        prototype : BufferPrototype, optional
            The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

        Returns
        -------
        NDArrayLikeOrScalar
            An array-like or scalar containing the data for the requested selection.

        Examples
        --------
        Setup a 2-dimensional array::

            >>> import zarr
            >>> import numpy as np
            >>> data = np.arange(100).reshape(10, 10)
            >>> z = zarr.create_array(
            >>>        StorePath(MemoryStore(mode="w")),
            >>>        shape=data.shape,
            >>>        chunks=data.shape,
            >>>        dtype=data.dtype,
            >>>        )
            >>> z[:] = data

        Retrieve rows and columns via any combination of int, slice, integer array and/or
        Boolean array::

            >>> z.get_orthogonal_selection(([1, 4], slice(None)))
            array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
                   [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
            >>> z.get_orthogonal_selection((slice(None), [1, 4]))
            array([[ 1,  4],
                   [11, 14],
                   [21, 24],
                   [31, 34],
                   [41, 44],
                   [51, 54],
                   [61, 64],
                   [71, 74],
                   [81, 84],
                   [91, 94]])
            >>> z.get_orthogonal_selection(([1, 4], [1, 4]))
            array([[11, 14],
                   [41, 44]])
            >>> sel = np.zeros(z.shape[0], dtype=bool)
            >>> sel[1] = True
            >>> sel[4] = True
            >>> z.get_orthogonal_selection((sel, sel))
            array([[11, 14],
                   [41, 44]])

        For convenience, the orthogonal selection functionality is also available via the
        `oindex` property, e.g.::

            >>> z.oindex[[1, 4], :]
            array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
                   [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
            >>> z.oindex[:, [1, 4]]
            array([[ 1,  4],
                   [11, 14],
                   [21, 24],
                   [31, 34],
                   [41, 44],
                   [51, 54],
                   [61, 64],
                   [71, 74],
                   [81, 84],
                   [91, 94]])
            >>> z.oindex[[1, 4], [1, 4]]
            array([[11, 14],
                   [41, 44]])
            >>> sel = np.zeros(z.shape[0], dtype=bool)
            >>> sel[1] = True
            >>> sel[4] = True
            >>> z.oindex[sel, sel]
            array([[11, 14],
                   [41, 44]])

        Notes
        -----
        Orthogonal indexing is also known as outer indexing.

        Slices with step > 1 are supported, but slices with negative step are not.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]

        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = OrthogonalIndexer(selection, self.shape, self.metadata.chunk_grid)
        return sync(
            self._async_array._get_selection(
                indexer=indexer, out=out, fields=fields, prototype=prototype
            )
        )

    def set_orthogonal_selection(
        self,
        selection: OrthogonalSelection,
        value: npt.ArrayLike,
        *,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> None:
        """Modify data via a selection for each dimension of the array.

        Parameters
        ----------
        selection : tuple
            A selection for each dimension of the array. May be any combination of int,
            slice, integer array or Boolean array.
        value : npt.ArrayLike
            An array-like array containing the data to be stored in the array.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to set
            data for.
        prototype : BufferPrototype, optional
            The prototype of the buffer used for setting the data. If not provided, the
            default buffer prototype is used.

        Examples
        --------
        Setup a 2-dimensional array::

            >>> import zarr
            >>> z = zarr.zeros(
            >>>        shape=(5, 5),
            >>>        store=StorePath(MemoryStore(mode="w")),
            >>>        chunk_shape=(5, 5),
            >>>        dtype="i4",
            >>>       )


        Set data for a selection of rows::

            >>> z.set_orthogonal_selection(([1, 4], slice(None)), 1)
            >>> z[...]
            array([[0, 0, 0, 0, 0],
                   [1, 1, 1, 1, 1],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [1, 1, 1, 1, 1]])

        Set data for a selection of columns::

            >>> z.set_orthogonal_selection((slice(None), [1, 4]), 2)
            >>> z[...]
            array([[0, 2, 0, 0, 2],
                   [1, 2, 1, 1, 2],
                   [0, 2, 0, 0, 2],
                   [0, 2, 0, 0, 2],
                   [1, 2, 1, 1, 2]])

        Set data for a selection of rows and columns::

            >>> z.set_orthogonal_selection(([1, 4], [1, 4]), 3)
            >>> z[...]
            array([[0, 2, 0, 0, 2],
                   [1, 3, 1, 1, 3],
                   [0, 2, 0, 0, 2],
                   [0, 2, 0, 0, 2],
                   [1, 3, 1, 1, 3]])

        Set data from a 2D array::

            >>> values = np.arange(10).reshape(2, 5)
            >>> z.set_orthogonal_selection(([0, 3], ...), values)
            >>> z[...]
            array([[0, 1, 2, 3, 4],
                   [1, 3, 1, 1, 3],
                   [0, 2, 0, 0, 2],
                   [5, 6, 7, 8, 9],
                   [1, 3, 1, 1, 3]])

        For convenience, this functionality is also available via the `oindex` property.
        E.g.::

            >>> z.oindex[[1, 4], [1, 4]] = 4
            >>> z[...]
            array([[0, 1, 2, 3, 4],
                   [1, 4, 1, 1, 4],
                   [0, 2, 0, 0, 2],
                   [5, 6, 7, 8, 9],
                   [1, 4, 1, 1, 4]])

        Notes
        -----
        Orthogonal indexing is also known as outer indexing.

        Slices with step > 1 are supported, but slices with negative step are not.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]
        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = OrthogonalIndexer(selection, self.shape, self.metadata.chunk_grid)
        return sync(
            self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype)
        )

    def get_mask_selection(
        self,
        mask: MaskSelection,
        *,
        out: NDBuffer | None = None,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> NDArrayLikeOrScalar:
        """Retrieve a selection of individual items, by providing a Boolean array of the
        same shape as the array against which the selection is being made, where True
        values indicate a selected item.

        Parameters
        ----------
        mask : ndarray, bool
            A Boolean array of the same shape as the array against which the selection is
            being made.
        out : NDBuffer, optional
            If given, load the selected data directly into this buffer.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to
            extract data for.
        prototype : BufferPrototype, optional
            The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

        Returns
        -------
        NDArrayLikeOrScalar
            An array-like or scalar containing the data for the requested selection.

        Examples
        --------
        Setup a 2-dimensional array::

            >>> import zarr
            >>> import numpy as np
            >>> data = np.arange(100).reshape(10, 10)
            >>> z = zarr.create_array(
            >>>        StorePath(MemoryStore(mode="w")),
            >>>        shape=data.shape,
            >>>        chunks=data.shape,
            >>>        dtype=data.dtype,
            >>>        )
            >>> z[:] = data

        Retrieve items by specifying a mask::

            >>> sel = np.zeros_like(z, dtype=bool)
            >>> sel[1, 1] = True
            >>> sel[4, 4] = True
            >>> z.get_mask_selection(sel)
            array([11, 44])

        For convenience, the mask selection functionality is also available via the
        `vindex` property, e.g.::

            >>> z.vindex[sel]
            array([11, 44])

        Notes
        -----
        Mask indexing is a form of vectorized or inner indexing, and is equivalent to
        coordinate indexing. Internally the mask array is converted to coordinate
        arrays by calling `np.nonzero`.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]
        """

        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = MaskIndexer(mask, self.shape, self.metadata.chunk_grid)
        return sync(
            self._async_array._get_selection(
                indexer=indexer, out=out, fields=fields, prototype=prototype
            )
        )

    def set_mask_selection(
        self,
        mask: MaskSelection,
        value: npt.ArrayLike,
        *,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> None:
        """Modify a selection of individual items, by providing a Boolean array of the
        same shape as the array against which the selection is being made, where True
        values indicate a selected item.

        Parameters
        ----------
        mask : ndarray, bool
            A Boolean array of the same shape as the array against which the selection is
            being made.
        value : npt.ArrayLike
            An array-like containing values to be stored into the array.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to set
            data for.

        Examples
        --------
        Setup a 2-dimensional array::

            >>> import zarr
            >>> z = zarr.zeros(
            >>>        shape=(5, 5),
            >>>        store=StorePath(MemoryStore(mode="w")),
            >>>        chunk_shape=(5, 5),
            >>>        dtype="i4",
            >>>       )

        Set data for a selection of items::

            >>> sel = np.zeros_like(z, dtype=bool)
            >>> sel[1, 1] = True
            >>> sel[4, 4] = True
            >>> z.set_mask_selection(sel, 1)
            >>> z[...]
            array([[0, 0, 0, 0, 0],
                   [0, 1, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 1]])

        For convenience, this functionality is also available via the `vindex` property.
        E.g.::

            >>> z.vindex[sel] = 2
            >>> z[...]
            array([[0, 0, 0, 0, 0],
                   [0, 2, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 2]])

        Notes
        -----
        Mask indexing is a form of vectorized or inner indexing, and is equivalent to
        coordinate indexing. Internally the mask array is converted to coordinate
        arrays by calling `np.nonzero`.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]

        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = MaskIndexer(mask, self.shape, self.metadata.chunk_grid)
        sync(self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype))

    def get_coordinate_selection(
        self,
        selection: CoordinateSelection,
        *,
        out: NDBuffer | None = None,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> NDArrayLikeOrScalar:
        """Retrieve a selection of individual items, by providing the indices
        (coordinates) for each selected item.

        Parameters
        ----------
        selection : tuple
            An integer (coordinate) array for each dimension of the array.
        out : NDBuffer, optional
            If given, load the selected data directly into this buffer.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to
            extract data for.
        prototype : BufferPrototype, optional
            The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

        Returns
        -------
        NDArrayLikeOrScalar
            An array-like or scalar containing the data for the requested coordinate selection.

        Examples
        --------
        Setup a 2-dimensional array::

            >>> import zarr
            >>> import numpy as np
            >>> data = np.arange(0, 100, dtype="uint16").reshape((10, 10))
            >>> z = zarr.create_array(
            >>>        StorePath(MemoryStore(mode="w")),
            >>>        shape=data.shape,
            >>>        chunks=(3, 3),
            >>>        dtype=data.dtype,
            >>>        )
            >>> z[:] = data

        Retrieve items by specifying their coordinates::

            >>> z.get_coordinate_selection(([1, 4], [1, 4]))
            array([11, 44])

        For convenience, the coordinate selection functionality is also available via the
        `vindex` property, e.g.::

            >>> z.vindex[[1, 4], [1, 4]]
            array([11, 44])

        Notes
        -----
        Coordinate indexing is also known as point selection, and is a form of vectorized
        or inner indexing.

        Slices are not supported. Coordinate arrays must be provided for all dimensions
        of the array.

        Coordinate arrays may be multidimensional, in which case the output array will
        also be multidimensional. Coordinate arrays are broadcast against each other
        before being applied. The shape of the output will be the same as the shape of
        each coordinate array after broadcasting.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]

        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = CoordinateIndexer(selection, self.shape, self.metadata.chunk_grid)
        out_array = sync(
            self._async_array._get_selection(
                indexer=indexer, out=out, fields=fields, prototype=prototype
            )
        )

        if hasattr(out_array, "shape"):
            # restore shape
            out_array = np.array(out_array).reshape(indexer.sel_shape)
        return out_array

    def set_coordinate_selection(
        self,
        selection: CoordinateSelection,
        value: npt.ArrayLike,
        *,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> None:
        """Modify a selection of individual items, by providing the indices (coordinates)
        for each item to be modified.

        Parameters
        ----------
        selection : tuple
            An integer (coordinate) array for each dimension of the array.
        value : npt.ArrayLike
            An array-like containing values to be stored into the array.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to set
            data for.

        Examples
        --------
        Setup a 2-dimensional array::

            >>> import zarr
            >>> z = zarr.zeros(
            >>>        shape=(5, 5),
            >>>        store=StorePath(MemoryStore(mode="w")),
            >>>        chunk_shape=(5, 5),
            >>>        dtype="i4",
            >>>       )

        Set data for a selection of items::

            >>> z.set_coordinate_selection(([1, 4], [1, 4]), 1)
            >>> z[...]
            array([[0, 0, 0, 0, 0],
                   [0, 1, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 1]])

        For convenience, this functionality is also available via the `vindex` property.
        E.g.::

            >>> z.vindex[[1, 4], [1, 4]] = 2
            >>> z[...]
            array([[0, 0, 0, 0, 0],
                   [0, 2, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 2]])

        Notes
        -----
        Coordinate indexing is also known as point selection, and is a form of vectorized
        or inner indexing.

        Slices are not supported. Coordinate arrays must be provided for all dimensions
        of the array.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]

        """
        if prototype is None:
            prototype = default_buffer_prototype()
        # setup indexer
        indexer = CoordinateIndexer(selection, self.shape, self.metadata.chunk_grid)

        # handle value - need ndarray-like flatten value
        if not is_scalar(value, self.dtype):
            try:
                from numcodecs.compat import ensure_ndarray_like

                value = ensure_ndarray_like(value)  # TODO replace with agnostic
            except TypeError:
                # Handle types like `list` or `tuple`
                value = np.array(value)  # TODO replace with agnostic
        if hasattr(value, "shape") and len(value.shape) > 1:
            value = np.array(value).reshape(-1)

        if not is_scalar(value, self.dtype) and (
            isinstance(value, NDArrayLike) and indexer.shape != value.shape
        ):
            raise ValueError(
                f"Attempting to set a selection of {indexer.sel_shape[0]} "
                f"elements with an array of {value.shape[0]} elements."
            )

        sync(self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype))

    def get_block_selection(
        self,
        selection: BasicSelection,
        *,
        out: NDBuffer | None = None,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> NDArrayLikeOrScalar:
        """Retrieve a selection of individual items, by providing the indices
        (coordinates) for each selected item.

        Parameters
        ----------
        selection : int or slice or tuple of int or slice
            An integer (coordinate) or slice for each dimension of the array.
        out : NDBuffer, optional
            If given, load the selected data directly into this buffer.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to
            extract data for.
        prototype : BufferPrototype, optional
            The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

        Returns
        -------
        NDArrayLikeOrScalar
            An array-like or scalar containing the data for the requested block selection.

        Examples
        --------
        Setup a 2-dimensional array::

            >>> import zarr
            >>> import numpy as np
            >>> data = np.arange(0, 100, dtype="uint16").reshape((10, 10))
            >>> z = zarr.create_array(
            >>>        StorePath(MemoryStore(mode="w")),
            >>>        shape=data.shape,
            >>>        chunks=(3, 3),
            >>>        dtype=data.dtype,
            >>>        )
            >>> z[:] = data

        Retrieve items by specifying their block coordinates::

            >>> z.get_block_selection((1, slice(None)))
            array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
                   [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
                   [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

        Which is equivalent to::

            >>> z[3:6, :]
            array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
                   [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
                   [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

        For convenience, the block selection functionality is also available via the
        `blocks` property, e.g.::

            >>> z.blocks[1]
            array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
                   [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
                   [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

        Notes
        -----
        Block indexing is a convenience indexing method to work on individual chunks
        with chunk index slicing. It has the same concept as Dask's `Array.blocks`
        indexing.

        Slices are supported. However, only with a step size of one.

        Block index arrays may be multidimensional to index multidimensional arrays.
        For example::

            >>> z.blocks[0, 1:3]
            array([[ 3,  4,  5,  6,  7,  8],
                   [13, 14, 15, 16, 17, 18],
                   [23, 24, 25, 26, 27, 28]])

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]
        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = BlockIndexer(selection, self.shape, self.metadata.chunk_grid)
        return sync(
            self._async_array._get_selection(
                indexer=indexer, out=out, fields=fields, prototype=prototype
            )
        )

    def set_block_selection(
        self,
        selection: BasicSelection,
        value: npt.ArrayLike,
        *,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> None:
        """Modify a selection of individual blocks, by providing the chunk indices
        (coordinates) for each block to be modified.

        Parameters
        ----------
        selection : tuple
            An integer (coordinate) or slice for each dimension of the array.
        value : npt.ArrayLike
            An array-like containing the data to be stored in the block selection.
        fields : str or sequence of str, optional
            For arrays with a structured dtype, one or more fields can be specified to set
            data for.
        prototype : BufferPrototype, optional
            The prototype of the buffer used for setting the data. If not provided, the
            default buffer prototype is used.

        Examples
        --------
        Set up a 2-dimensional array::

            >>> import zarr
            >>> z = zarr.zeros(
            >>>        shape=(6, 6),
            >>>        store=StorePath(MemoryStore(mode="w")),
            >>>        chunk_shape=(2, 2),
            >>>        dtype="i4",
            >>>       )

        Set data for a selection of items::

            >>> z.set_block_selection((1, 0), 1)
            >>> z[...]
            array([[0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0],
                   [1, 1, 0, 0, 0, 0],
                   [1, 1, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0]])

        For convenience, this functionality is also available via the `blocks` property.
        E.g.::

            >>> z.blocks[2, 1] = 4
            >>> z[...]
            array([[0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0],
                   [1, 1, 0, 0, 0, 0],
                   [1, 1, 0, 0, 0, 0],
                   [0, 0, 4, 4, 0, 0],
                   [0, 0, 4, 4, 0, 0]])

            >>> z.blocks[:, 2] = 7
            >>> z[...]
            array([[0, 0, 0, 0, 7, 7],
                   [0, 0, 0, 0, 7, 7],
                   [1, 1, 0, 0, 7, 7],
                   [1, 1, 0, 0, 7, 7],
                   [0, 0, 4, 4, 7, 7],
                   [0, 0, 4, 4, 7, 7]])

        Notes
        -----
        Block indexing is a convenience indexing method to work on individual chunks
        with chunk index slicing. It has the same concept as Dask's `Array.blocks`
        indexing.

        Slices are supported. However, only with a step size of one.

        Related
        -------
        [get_basic_selection][zarr.Array.get_basic_selection],
        [set_basic_selection][zarr.Array.set_basic_selection],
        [get_mask_selection][zarr.Array.get_mask_selection],
        [set_mask_selection][zarr.Array.set_mask_selection],
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [get_block_selection][zarr.Array.get_block_selection],
        [set_block_selection][zarr.Array.set_block_selection],
        [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
        [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
        [__setitem__][zarr.Array.__setitem__]

        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = BlockIndexer(selection, self.shape, self.metadata.chunk_grid)
        sync(self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype))

    @property
    def vindex(self) -> VIndex:
        """Shortcut for vectorized (inner) indexing, see
        [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection],
        [get_mask_selection][zarr.Array.get_mask_selection] and
        [set_mask_selection][zarr.Array.set_mask_selection] for documentation and
        examples."""
        return VIndex(self)

    @property
    def oindex(self) -> OIndex:
        """Shortcut for orthogonal (outer) indexing, see
        [get_orthogonal_selection][zarr.Array.get_orthogonal_selection] and
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection] for
        documentation and examples."""
        return OIndex(self)

    @property
    def blocks(self) -> BlockIndex:
        """Shortcut for blocked chunked indexing, see
        [get_block_selection][zarr.Array.get_block_selection] and
        [set_block_selection][zarr.Array.set_block_selection] for documentation and
        examples."""
        return BlockIndex(self)

    def resize(self, new_shape: ShapeLike) -> None:
        """
        Change the shape of the array by growing or shrinking one or more
        dimensions.

        Parameters
        ----------
        new_shape : tuple
            New shape of the array.

        Notes
        -----
        If one or more dimensions are shrunk, any chunks falling outside the
        new array shape will be deleted from the underlying store.
        However, it is noteworthy that the chunks partially falling inside the new array
        (i.e. boundary chunks) will remain intact, and therefore,
        the data falling outside the new array but inside the boundary chunks
        would be restored by a subsequent resize operation that grows the array size.

        Examples
        --------
        >>> import zarr
        >>> z = zarr.zeros(shape=(10000, 10000),
        >>>                chunk_shape=(1000, 1000),
        >>>                dtype="i4",)
        >>> z.shape
        (10000, 10000)
        >>> z = z.resize(20000, 1000)
        >>> z.shape
        (20000, 1000)
        >>> z2 = z.resize(50, 50)
        >>> z.shape
        (20000, 1000)
        >>> z2.shape
        (50, 50)
        """
        sync(self._async_array.resize(new_shape))

    def append(self, data: npt.ArrayLike, axis: int = 0) -> tuple[int, ...]:
        """Append `data` to `axis`.

        Parameters
        ----------
        data : array-like
            Data to be appended.
        axis : int
            Axis along which to append.

        Returns
        -------
        new_shape : tuple

        Notes
        -----
        The size of all dimensions other than `axis` must match between this
        array and `data`.

        Examples
        --------
        >>> import numpy as np
        >>> import zarr
        >>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000)
        >>> z = zarr.array(a, chunks=(1000, 100))
        >>> z.shape
        (10000, 1000)
        >>> z.append(a)
        (20000, 1000)
        >>> z.append(np.vstack([a, a]), axis=1)
        (20000, 2000)
        >>> z.shape
        (20000, 2000)
        """
        return sync(self._async_array.append(data, axis=axis))

    def update_attributes(self, new_attributes: dict[str, JSON]) -> Array:
        """
        Update the array's attributes.

        Parameters
        ----------
        new_attributes : dict
            A dictionary of new attributes to update or add to the array. The keys represent attribute
            names, and the values must be JSON-compatible.

        Returns
        -------
        Array
            The array with the updated attributes.

        Raises
        ------
        ValueError
            If the attributes are invalid or incompatible with the array's metadata.

        Notes
        -----
        - The updated attributes will be merged with existing attributes, and any conflicts will be
          overwritten by the new values.
        """
        # TODO: remove this cast when type inference improves
        new_array = sync(self._async_array.update_attributes(new_attributes))
        # TODO: remove this cast when type inference improves
        _new_array = cast("AsyncArray[ArrayV2Metadata] | AsyncArray[ArrayV3Metadata]", new_array)
        return type(self)(_new_array)

    def __repr__(self) -> str:
        return f"<Array {self.store_path} shape={self.shape} dtype={self.dtype}>"

    @property
    def info(self) -> Any:
        """
        Return the statically known information for an array.

        Returns
        -------
        ArrayInfo

        Related
        -------
        [zarr.Array.info_complete][] - All information about a group,
            including dynamic information like the number of bytes and chunks written.

        Examples
        --------
        >>> arr = zarr.create(shape=(10,), chunks=(2,), dtype="float32")
        >>> arr.info
        Type               : Array
        Zarr format        : 3
        Data type          : DataType.float32
        Shape              : (10,)
        Chunk shape        : (2,)
        Order              : C
        Read-only          : False
        Store type         : MemoryStore
        Codecs             : [BytesCodec(endian=<Endian.little: 'little'>)]
        No. bytes          : 40
        """
        return self._async_array.info

    def info_complete(self) -> Any:
        """
        Returns all the information about an array, including information from the Store.

        In addition to the statically known information like ``name`` and ``zarr_format``,
        this includes additional information like the size of the array in bytes and
        the number of chunks written.

        Note that this method will need to read metadata from the store.

        Returns
        -------
        ArrayInfo

        Related
        -------
        [zarr.Array.info][] - The statically known subset of metadata about an array.
        """
        return sync(self._async_array.info_complete())

attrs property

attrs: Attributes

Returns a MutableMapping containing user-defined attributes.

Returns:

Notes

Note that attribute values must be JSON serializable.

basename property

basename: str

Final component of name.

blocks property

blocks: BlockIndex

Shortcut for blocked chunked indexing, see get_block_selection and set_block_selection for documentation and examples.

cdata_shape property

cdata_shape: tuple[int, ...]

The shape of the chunk grid for this array.

chunks property

chunks: tuple[int, ...]

Returns a tuple of integers describing the length of each dimension of a chunk of the array. If sharding is used the inner chunk shape is returned.

Only defined for arrays using using RegularChunkGrid. If array doesn't use RegularChunkGrid, NotImplementedError is raised.

Returns:

  • tuple

    A tuple of integers representing the length of each dimension of a chunk.

compressor property

compressor: Numcodec | None

Compressor that is applied to each chunk of the array.

Deprecated

array.compressor is deprecated since v3.0.0 and will be removed in a future release. Use array.compressors instead.

compressors property

compressors: (
    tuple[Numcodec, ...] | tuple[BytesBytesCodec, ...]
)

Compressors that are applied to each chunk of the array. Compressors are applied in order, and after any filters are applied (if any are specified) and the data is serialized into bytes.

dtype property

dtype: dtype[Any]

Returns the NumPy data type.

Returns:

  • dtype

    The NumPy data type.

filters property

filters: tuple[Numcodec, ...] | tuple[ArrayArrayCodec, ...]

Filters that are applied to each chunk of the array, in order, before serializing that chunk to bytes.

info property

info: Any

Return the statically known information for an array.

Returns:

  • ArrayInfo

Examples:

>>> arr = zarr.create(shape=(10,), chunks=(2,), dtype="float32")
>>> arr.info
Type               : Array
Zarr format        : 3
Data type          : DataType.float32
Shape              : (10,)
Chunk shape        : (2,)
Order              : C
Read-only          : False
Store type         : MemoryStore
Codecs             : [BytesCodec(endian=<Endian.little: 'little'>)]
No. bytes          : 40

name property

name: str

Array name following h5py convention.

nbytes property

nbytes: int

The total number of bytes that can be stored in the chunks of this array.

Notes

This value is calculated by multiplying the number of elements in the array and the size of each element, the latter of which is determined by the dtype of the array. For this reason, nbytes will likely be inaccurate for arrays with variable-length dtypes. It is not possible to determine the size of an array with variable-length elements from the shape and dtype alone.

nchunks property

nchunks: int

The number of chunks in this array.

Note that if a sharding codec is used, then the number of chunks may exceed the number of stored objects supporting this array.

nchunks_initialized property

nchunks_initialized: int

Calculate the number of chunks that have been initialized in storage.

This value is calculated as the product of the number of initialized shards and the number of chunks per shard. For arrays that do not use sharding, the number of chunks per shard is effectively 1, and in that case the number of chunks initialized is the same as the number of stored objects associated with an array. For a direct count of the number of initialized stored objects, see nshards_initialized.

Returns:

  • nchunks_initialized ( int ) –

    The number of chunks that have been initialized.

Examples:

>>> arr = zarr.create_array(store={}, shape=(10,), chunks=(1,), shards=(2,))
>>> arr.nchunks_initialized
0
>>> arr[:5] = 1
>>> arr.nchunks_initialized
6

ndim property

ndim: int

Returns the number of dimensions in the array.

Returns:

  • int

    The number of dimensions in the array.

oindex property

oindex: OIndex

Shortcut for orthogonal (outer) indexing, see get_orthogonal_selection and set_orthogonal_selection for documentation and examples.

path property

path: str

Storage path.

serializer property

serializer: None | ArrayBytesCodec

Array-to-bytes codec to use for serializing the chunks into bytes.

shape property writable

shape: tuple[int, ...]

Returns the shape of the array.

Returns:

  • tuple[int, ...]

    The shape of the array.

shards property

shards: tuple[int, ...] | None

Returns a tuple of integers describing the length of each dimension of a shard of the array. Returns None if sharding is not used.

Only defined for arrays using using RegularChunkGrid. If array doesn't use RegularChunkGrid, NotImplementedError is raised.

Returns:

  • tuple | None

    A tuple of integers representing the length of each dimension of a shard or None if sharding is not used.

size property

size: int

Returns the total number of elements in the array.

Returns:

  • int

    Total number of elements in the array.

vindex property

vindex: VIndex

Shortcut for vectorized (inner) indexing, see get_coordinate_selection, set_coordinate_selection, get_mask_selection and set_mask_selection for documentation and examples.

__array__

__array__(
    dtype: DTypeLike | None = None, copy: bool | None = None
) -> NDArrayLike

This method is used by numpy when converting zarr.Array into a numpy array. For more information, see numpy.org/devdocs/user/basics.interoperability.html#the-array-method

Source code in zarr/core/array.py
def __array__(
    self, dtype: npt.DTypeLike | None = None, copy: bool | None = None
) -> NDArrayLike:
    """
    This method is used by numpy when converting zarr.Array into a numpy array.
    For more information, see https://numpy.org/devdocs/user/basics.interoperability.html#the-array-method
    """
    if copy is False:
        msg = "`copy=False` is not supported. This method always creates a copy."
        raise ValueError(msg)

    arr = self[...]
    arr_np: NDArrayLike = np.array(arr, dtype=dtype)

    if dtype is not None:
        arr_np = arr_np.astype(dtype)

    return arr_np

__getitem__

__getitem__(selection: Selection) -> NDArrayLikeOrScalar

Retrieve data for an item or region of the array.

Parameters:

  • selection (tuple) –

    An integer index or slice or tuple of int/slice objects specifying the requested item or region for each dimension of the array.

Returns:

  • NDArrayLikeOrScalar

    An array-like or scalar containing the data for the requested region.

Examples:

Setup a 1-dimensional array::

>>> import zarr
>>> import numpy as np
>>> data = np.arange(100, dtype="uint16")
>>> z = zarr.create_array(
>>>        StorePath(MemoryStore(mode="w")),
>>>        shape=data.shape,
>>>        chunks=(10,),
>>>        dtype=data.dtype,
>>>        )
>>> z[:] = data

Retrieve a single item::

>>> z[5]
5

Retrieve a region via slicing::

>>> z[:5]
array([0, 1, 2, 3, 4])
>>> z[-5:]
array([95, 96, 97, 98, 99])
>>> z[5:10]
array([5, 6, 7, 8, 9])
>>> z[5:10:2]
array([5, 7, 9])
>>> z[::2]
array([ 0,  2,  4, ..., 94, 96, 98])

Load the entire array into memory::

>>> z[...]
array([ 0,  1,  2, ..., 97, 98, 99])

Setup a 2-dimensional array::

>>> data = np.arange(100, dtype="uint16").reshape(10, 10)
>>> z = zarr.create_array(
>>>        StorePath(MemoryStore(mode="w")),
>>>        shape=data.shape,
>>>        chunks=(10, 10),
>>>        dtype=data.dtype,
>>>        )
>>> z[:] = data

Retrieve an item::

>>> z[2, 2]
22

Retrieve a region via slicing::

>>> z[1:3, 1:3]
array([[11, 12],
       [21, 22]])
>>> z[1:3, :]
array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]])
>>> z[:, 1:3]
array([[ 1,  2],
       [11, 12],
       [21, 22],
       [31, 32],
       [41, 42],
       [51, 52],
       [61, 62],
       [71, 72],
       [81, 82],
       [91, 92]])
>>> z[0:5:2, 0:5:2]
array([[ 0,  2,  4],
       [20, 22, 24],
       [40, 42, 44]])
>>> z[::2, ::2]
array([[ 0,  2,  4,  6,  8],
       [20, 22, 24, 26, 28],
       [40, 42, 44, 46, 48],
       [60, 62, 64, 66, 68],
       [80, 82, 84, 86, 88]])

Load the entire array into memory::

>>> z[...]
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
       [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
       [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
       [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
       [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])
Notes

Slices with step > 1 are supported, but slices with negative step are not.

For arrays with a structured dtype, see Zarr format 2 for examples of how to use fields

Currently the implementation for getitem is provided by vindex if the indexing is pure fancy indexing (ie a broadcast-compatible tuple of integer array indices), or by set_basic_selection otherwise.

Effectively, this means that the following indexing modes are supported:

  • integer indexing
  • slice indexing
  • mixed slice and integer indexing
  • boolean indexing
  • fancy indexing (vectorized list of integers)

For specific indexing options including outer indexing, see the methods listed under Related.

Source code in zarr/core/array.py
def __getitem__(self, selection: Selection) -> NDArrayLikeOrScalar:
    """Retrieve data for an item or region of the array.

    Parameters
    ----------
    selection : tuple
        An integer index or slice or tuple of int/slice objects specifying the
        requested item or region for each dimension of the array.

    Returns
    -------
    NDArrayLikeOrScalar
         An array-like or scalar containing the data for the requested region.

    Examples
    --------
    Setup a 1-dimensional array::

        >>> import zarr
        >>> import numpy as np
        >>> data = np.arange(100, dtype="uint16")
        >>> z = zarr.create_array(
        >>>        StorePath(MemoryStore(mode="w")),
        >>>        shape=data.shape,
        >>>        chunks=(10,),
        >>>        dtype=data.dtype,
        >>>        )
        >>> z[:] = data

    Retrieve a single item::

        >>> z[5]
        5

    Retrieve a region via slicing::

        >>> z[:5]
        array([0, 1, 2, 3, 4])
        >>> z[-5:]
        array([95, 96, 97, 98, 99])
        >>> z[5:10]
        array([5, 6, 7, 8, 9])
        >>> z[5:10:2]
        array([5, 7, 9])
        >>> z[::2]
        array([ 0,  2,  4, ..., 94, 96, 98])

    Load the entire array into memory::

        >>> z[...]
        array([ 0,  1,  2, ..., 97, 98, 99])

    Setup a 2-dimensional array::

        >>> data = np.arange(100, dtype="uint16").reshape(10, 10)
        >>> z = zarr.create_array(
        >>>        StorePath(MemoryStore(mode="w")),
        >>>        shape=data.shape,
        >>>        chunks=(10, 10),
        >>>        dtype=data.dtype,
        >>>        )
        >>> z[:] = data

    Retrieve an item::

        >>> z[2, 2]
        22

    Retrieve a region via slicing::

        >>> z[1:3, 1:3]
        array([[11, 12],
               [21, 22]])
        >>> z[1:3, :]
        array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
               [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]])
        >>> z[:, 1:3]
        array([[ 1,  2],
               [11, 12],
               [21, 22],
               [31, 32],
               [41, 42],
               [51, 52],
               [61, 62],
               [71, 72],
               [81, 82],
               [91, 92]])
        >>> z[0:5:2, 0:5:2]
        array([[ 0,  2,  4],
               [20, 22, 24],
               [40, 42, 44]])
        >>> z[::2, ::2]
        array([[ 0,  2,  4,  6,  8],
               [20, 22, 24, 26, 28],
               [40, 42, 44, 46, 48],
               [60, 62, 64, 66, 68],
               [80, 82, 84, 86, 88]])

    Load the entire array into memory::

        >>> z[...]
        array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
               [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
               [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
               [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
               [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
               [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
               [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
               [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
               [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
               [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])

    Notes
    -----
    Slices with step > 1 are supported, but slices with negative step are not.

    For arrays with a structured dtype, see Zarr format 2 for examples of how to use
    fields

    Currently the implementation for __getitem__ is provided by
    [`vindex`][zarr.Array.vindex] if the indexing is pure fancy indexing (ie a
    broadcast-compatible tuple of integer array indices), or by
    [`set_basic_selection`][zarr.Array.set_basic_selection] otherwise.

    Effectively, this means that the following indexing modes are supported:

       - integer indexing
       - slice indexing
       - mixed slice and integer indexing
       - boolean indexing
       - fancy indexing (vectorized list of integers)

    For specific indexing options including outer indexing, see the
    methods listed under Related.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection], [set_basic_selection][zarr.Array.set_basic_selection]
    [get_mask_selection][zarr.Array.get_mask_selection], [set_mask_selection][zarr.Array.set_mask_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection], [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection], [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_block_selection][zarr.Array.get_block_selection], [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex], [blocks][zarr.Array.blocks], [__setitem__][zarr.Array.__setitem__]

    """
    fields, pure_selection = pop_fields(selection)
    if is_pure_fancy_indexing(pure_selection, self.ndim):
        return self.vindex[cast("CoordinateSelection | MaskSelection", selection)]
    elif is_pure_orthogonal_indexing(pure_selection, self.ndim):
        return self.get_orthogonal_selection(pure_selection, fields=fields)
    else:
        return self.get_basic_selection(cast("BasicSelection", pure_selection), fields=fields)

__setitem__

__setitem__(selection: Selection, value: ArrayLike) -> None

Modify data for an item or region of the array.

Parameters:

  • selection (tuple) –

    An integer index or slice or tuple of int/slice specifying the requested region for each dimension of the array.

  • value (ArrayLike) –

    An array-like containing the data to be stored in the selection.

Examples:

Setup a 1-dimensional array::

>>> import zarr
>>> z = zarr.zeros(
>>>        shape=(100,),
>>>        store=StorePath(MemoryStore(mode="w")),
>>>        chunk_shape=(5,),
>>>        dtype="i4",
>>>       )

Set all array elements to the same scalar value::

>>> z[...] = 42
>>> z[...]
array([42, 42, 42, ..., 42, 42, 42])

Set a portion of the array::

>>> z[:10] = np.arange(10)
>>> z[-10:] = np.arange(10)[::-1]
>>> z[...]
array([ 0, 1, 2, ..., 2, 1, 0])

Setup a 2-dimensional array::

>>> z = zarr.zeros(
>>>        shape=(5, 5),
>>>        store=StorePath(MemoryStore(mode="w")),
>>>        chunk_shape=(5, 5),
>>>        dtype="i4",
>>>       )

Set all array elements to the same scalar value::

>>> z[...] = 42

Set a portion of the array::

>>> z[0, :] = np.arange(z.shape[1])
>>> z[:, 0] = np.arange(z.shape[0])
>>> z[...]
array([[ 0,  1,  2,  3,  4],
       [ 1, 42, 42, 42, 42],
       [ 2, 42, 42, 42, 42],
       [ 3, 42, 42, 42, 42],
       [ 4, 42, 42, 42, 42]])
Notes

Slices with step > 1 are supported, but slices with negative step are not.

For arrays with a structured dtype, see Zarr format 2 for examples of how to use fields

Currently the implementation for setitem is provided by vindex if the indexing is pure fancy indexing (ie a broadcast-compatible tuple of integer array indices), or by set_basic_selection otherwise.

Effectively, this means that the following indexing modes are supported:

- integer indexing
- slice indexing
- mixed slice and integer indexing
- boolean indexing
- fancy indexing (vectorized list of integers)

For specific indexing options including outer indexing, see the methods listed under Related.

Source code in zarr/core/array.py
def __setitem__(self, selection: Selection, value: npt.ArrayLike) -> None:
    """Modify data for an item or region of the array.

    Parameters
    ----------
    selection : tuple
        An integer index or slice or tuple of int/slice specifying the requested
        region for each dimension of the array.
    value : npt.ArrayLike
        An array-like containing the data to be stored in the selection.

    Examples
    --------
    Setup a 1-dimensional array::

        >>> import zarr
        >>> z = zarr.zeros(
        >>>        shape=(100,),
        >>>        store=StorePath(MemoryStore(mode="w")),
        >>>        chunk_shape=(5,),
        >>>        dtype="i4",
        >>>       )

    Set all array elements to the same scalar value::

        >>> z[...] = 42
        >>> z[...]
        array([42, 42, 42, ..., 42, 42, 42])

    Set a portion of the array::

        >>> z[:10] = np.arange(10)
        >>> z[-10:] = np.arange(10)[::-1]
        >>> z[...]
        array([ 0, 1, 2, ..., 2, 1, 0])

    Setup a 2-dimensional array::

        >>> z = zarr.zeros(
        >>>        shape=(5, 5),
        >>>        store=StorePath(MemoryStore(mode="w")),
        >>>        chunk_shape=(5, 5),
        >>>        dtype="i4",
        >>>       )

    Set all array elements to the same scalar value::

        >>> z[...] = 42

    Set a portion of the array::

        >>> z[0, :] = np.arange(z.shape[1])
        >>> z[:, 0] = np.arange(z.shape[0])
        >>> z[...]
        array([[ 0,  1,  2,  3,  4],
               [ 1, 42, 42, 42, 42],
               [ 2, 42, 42, 42, 42],
               [ 3, 42, 42, 42, 42],
               [ 4, 42, 42, 42, 42]])

    Notes
    -----
    Slices with step > 1 are supported, but slices with negative step are not.

    For arrays with a structured dtype, see Zarr format 2 for examples of how to use
    fields

    Currently the implementation for __setitem__ is provided by
    [`vindex`][zarr.Array.vindex] if the indexing is pure fancy indexing (ie a
    broadcast-compatible tuple of integer array indices), or by
    [`set_basic_selection`][zarr.Array.set_basic_selection] otherwise.

    Effectively, this means that the following indexing modes are supported:

        - integer indexing
        - slice indexing
        - mixed slice and integer indexing
        - boolean indexing
        - fancy indexing (vectorized list of integers)

    For specific indexing options including outer indexing, see the
    methods listed under Related.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__]

    """
    fields, pure_selection = pop_fields(selection)
    if is_pure_fancy_indexing(pure_selection, self.ndim):
        self.vindex[cast("CoordinateSelection | MaskSelection", selection)] = value
    elif is_pure_orthogonal_indexing(pure_selection, self.ndim):
        self.set_orthogonal_selection(pure_selection, value, fields=fields)
    else:
        self.set_basic_selection(cast("BasicSelection", pure_selection), value, fields=fields)

append

append(data: ArrayLike, axis: int = 0) -> tuple[int, ...]

Append data to axis.

Parameters:

  • data (array - like) –

    Data to be appended.

  • axis (int, default: 0 ) –

    Axis along which to append.

Returns:

  • new_shape ( tuple ) –
Notes

The size of all dimensions other than axis must match between this array and data.

Examples:

>>> import numpy as np
>>> import zarr
>>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z = zarr.array(a, chunks=(1000, 100))
>>> z.shape
(10000, 1000)
>>> z.append(a)
(20000, 1000)
>>> z.append(np.vstack([a, a]), axis=1)
(20000, 2000)
>>> z.shape
(20000, 2000)
Source code in zarr/core/array.py
def append(self, data: npt.ArrayLike, axis: int = 0) -> tuple[int, ...]:
    """Append `data` to `axis`.

    Parameters
    ----------
    data : array-like
        Data to be appended.
    axis : int
        Axis along which to append.

    Returns
    -------
    new_shape : tuple

    Notes
    -----
    The size of all dimensions other than `axis` must match between this
    array and `data`.

    Examples
    --------
    >>> import numpy as np
    >>> import zarr
    >>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000)
    >>> z = zarr.array(a, chunks=(1000, 100))
    >>> z.shape
    (10000, 1000)
    >>> z.append(a)
    (20000, 1000)
    >>> z.append(np.vstack([a, a]), axis=1)
    (20000, 2000)
    >>> z.shape
    (20000, 2000)
    """
    return sync(self._async_array.append(data, axis=axis))

create classmethod

create(
    store: StoreLike,
    *,
    shape: tuple[int, ...],
    dtype: ZDTypeLike,
    zarr_format: ZarrFormat = 3,
    fill_value: Any | None = DEFAULT_FILL_VALUE,
    attributes: dict[str, JSON] | None = None,
    chunk_shape: tuple[int, ...] | None = None,
    chunk_key_encoding: ChunkKeyEncoding
    | tuple[Literal["default"], Literal[".", "/"]]
    | tuple[Literal["v2"], Literal[".", "/"]]
    | None = None,
    codecs: Iterable[Codec | dict[str, JSON]] | None = None,
    dimension_names: DimensionNames = None,
    chunks: tuple[int, ...] | None = None,
    dimension_separator: Literal[".", "/"] | None = None,
    order: MemoryOrder | None = None,
    filters: list[dict[str, JSON]] | None = None,
    compressor: CompressorLike = "auto",
    overwrite: bool = False,
    config: ArrayConfigLike | None = None,
) -> Array

Creates a new Array instance from an initialized store.

Deprecated

Array.create() is deprecated since v3.0.0 and will be removed in a future release. Use zarr.create_array instead.

Parameters:

  • store (StoreLike) –

    The array store that has already been initialized.

  • shape (tuple[int, ...]) –

    The shape of the array.

  • dtype (ZDTypeLike) –

    The data type of the array.

  • chunk_shape (tuple[int, ...], default: None ) –

    The shape of the Array's chunks. Zarr format 3 only. Zarr format 2 arrays should use chunks instead. If not specified, default are guessed based on the shape and dtype.

  • chunk_key_encoding (ChunkKeyEncodingLike, default: None ) –

    A specification of how the chunk keys are represented in storage. Zarr format 3 only. Zarr format 2 arrays should use dimension_separator instead. Default is ("default", "/").

  • codecs (Sequence of Codecs or dicts, default: None ) –

    An iterable of Codec or dict serializations of Codecs. The elements of this collection specify the transformation from array values to stored bytes. Zarr format 3 only. Zarr format 2 arrays should use filters and compressor instead.

    If no codecs are provided, default codecs will be used:

    • For numeric arrays, the default is BytesCodec and ZstdCodec.
    • For Unicode strings, the default is VLenUTF8Codec and ZstdCodec.
    • For bytes or objects, the default is VLenBytesCodec and ZstdCodec.
  • dimension_names (Iterable[str | None], default: None ) –

    The names of the dimensions (default is None). Zarr format 3 only. Zarr format 2 arrays should not use this parameter.

  • chunks (tuple[int, ...], default: None ) –

    The shape of the array's chunks. Zarr format 2 only. Zarr format 3 arrays should use chunk_shape instead. If not specified, default are guessed based on the shape and dtype.

  • dimension_separator (Literal['.', '/'], default: None ) –

    The dimension separator (default is "."). Zarr format 2 only. Zarr format 3 arrays should use chunk_key_encoding instead.

  • order (Literal['C', 'F'], default: None ) –

    The memory of the array (default is "C"). If zarr_format is 2, this parameter sets the memory order of the array. If zarr_format is 3, then this parameter is deprecated, because memory order is a runtime parameter for Zarr 3 arrays. The recommended way to specify the memory order for Zarr 3 arrays is via the config parameter, e.g. {'order': 'C'}.

  • filters (Iterable[Codec] | Literal['auto'], default: None ) –

    Iterable of filters to apply to each chunk of the array, in order, before serializing that chunk to bytes.

    For Zarr format 3, a "filter" is a codec that takes an array and returns an array, and these values must be instances of zarr.abc.codec.ArrayArrayCodec, or a dict representations of zarr.abc.codec.ArrayArrayCodec.

    For Zarr format 2, a "filter" can be any numcodecs codec; you should ensure that the the order if your filters is consistent with the behavior of each filter.

    The default value of "auto" instructs Zarr to use a default used based on the data type of the array and the Zarr format specified. For all data types in Zarr V3, and most data types in Zarr V2, the default filters are empty. The only cases where default filters are not empty is when the Zarr format is 2, and the data type is a variable-length data type like zarr.dtype.VariableLengthUTF8 or zarr.dtype.VariableLengthUTF8. In these cases, the default filters contains a single element which is a codec specific to that particular data type.

    To create an array with no filters, provide an empty iterable or the value None.

  • compressor (dict[str, JSON], default: 'auto' ) –

    Primary compressor to compress chunk data. Zarr format 2 only. Zarr format 3 arrays should use codecs instead.

    If no compressor is provided, a default compressor will be used:

    • For numeric arrays, the default is ZstdCodec.
    • For Unicode strings, the default is VLenUTF8Codec.
    • For bytes or objects, the default is VLenBytesCodec.

    These defaults can be changed by modifying the value of array.v2_default_compressor in zarr.config.

  • overwrite (bool, default: False ) –

    Whether to raise an error if the store already exists (default is False).

Returns:

  • Array

    Array created from the store.

Source code in zarr/core/array.py
@classmethod
@deprecated("Use zarr.create_array instead.", category=ZarrDeprecationWarning)
def create(
    cls,
    store: StoreLike,
    *,
    # v2 and v3
    shape: tuple[int, ...],
    dtype: ZDTypeLike,
    zarr_format: ZarrFormat = 3,
    fill_value: Any | None = DEFAULT_FILL_VALUE,
    attributes: dict[str, JSON] | None = None,
    # v3 only
    chunk_shape: tuple[int, ...] | None = None,
    chunk_key_encoding: (
        ChunkKeyEncoding
        | tuple[Literal["default"], Literal[".", "/"]]
        | tuple[Literal["v2"], Literal[".", "/"]]
        | None
    ) = None,
    codecs: Iterable[Codec | dict[str, JSON]] | None = None,
    dimension_names: DimensionNames = None,
    # v2 only
    chunks: tuple[int, ...] | None = None,
    dimension_separator: Literal[".", "/"] | None = None,
    order: MemoryOrder | None = None,
    filters: list[dict[str, JSON]] | None = None,
    compressor: CompressorLike = "auto",
    # runtime
    overwrite: bool = False,
    config: ArrayConfigLike | None = None,
) -> Array:
    """Creates a new Array instance from an initialized store.

    !!! warning "Deprecated"
        `Array.create()` is deprecated since v3.0.0 and will be removed in a future release.
        Use [`zarr.create_array`][] instead.

    Parameters
    ----------
    store : StoreLike
        The array store that has already been initialized.
    shape : tuple[int, ...]
        The shape of the array.
    dtype : ZDTypeLike
        The data type of the array.
    chunk_shape : tuple[int, ...], optional
        The shape of the Array's chunks.
        Zarr format 3 only. Zarr format 2 arrays should use `chunks` instead.
        If not specified, default are guessed based on the shape and dtype.
    chunk_key_encoding : ChunkKeyEncodingLike, optional
        A specification of how the chunk keys are represented in storage.
        Zarr format 3 only. Zarr format 2 arrays should use `dimension_separator` instead.
        Default is ``("default", "/")``.
    codecs : Sequence of Codecs or dicts, optional
        An iterable of Codec or dict serializations of Codecs. The elements of
        this collection specify the transformation from array values to stored bytes.
        Zarr format 3 only. Zarr format 2 arrays should use ``filters`` and ``compressor`` instead.

        If no codecs are provided, default codecs will be used:

        - For numeric arrays, the default is ``BytesCodec`` and ``ZstdCodec``.
        - For Unicode strings, the default is ``VLenUTF8Codec`` and ``ZstdCodec``.
        - For bytes or objects, the default is ``VLenBytesCodec`` and ``ZstdCodec``.
    dimension_names : Iterable[str | None], optional
        The names of the dimensions (default is None).
        Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
    chunks : tuple[int, ...], optional
        The shape of the array's chunks.
        Zarr format 2 only. Zarr format 3 arrays should use ``chunk_shape`` instead.
        If not specified, default are guessed based on the shape and dtype.
    dimension_separator : Literal[".", "/"], optional
        The dimension separator (default is ".").
        Zarr format 2 only. Zarr format 3 arrays should use ``chunk_key_encoding`` instead.
    order : Literal["C", "F"], optional
        The memory of the array (default is "C").
        If ``zarr_format`` is 2, this parameter sets the memory order of the array.
        If ``zarr_format`` is 3, then this parameter is deprecated, because memory order
        is a runtime parameter for Zarr 3 arrays. The recommended way to specify the memory
        order for Zarr 3 arrays is via the ``config`` parameter, e.g. ``{'order': 'C'}``.

    filters : Iterable[Codec] | Literal["auto"], optional
        Iterable of filters to apply to each chunk of the array, in order, before serializing that
        chunk to bytes.

        For Zarr format 3, a "filter" is a codec that takes an array and returns an array,
        and these values must be instances of [`zarr.abc.codec.ArrayArrayCodec`][], or a
        dict representations of [`zarr.abc.codec.ArrayArrayCodec`][].

        For Zarr format 2, a "filter" can be any numcodecs codec; you should ensure that the
        the order if your filters is consistent with the behavior of each filter.

        The default value of ``"auto"`` instructs Zarr to use a default used based on the data
        type of the array and the Zarr format specified. For all data types in Zarr V3, and most
        data types in Zarr V2, the default filters are empty. The only cases where default filters
        are not empty is when the Zarr format is 2, and the data type is a variable-length data type like
        [`zarr.dtype.VariableLengthUTF8`][] or [`zarr.dtype.VariableLengthUTF8`][]. In these cases,
        the default filters contains a single element which is a codec specific to that particular data type.

        To create an array with no filters, provide an empty iterable or the value ``None``.
    compressor : dict[str, JSON], optional
        Primary compressor to compress chunk data.
        Zarr format 2 only. Zarr format 3 arrays should use ``codecs`` instead.

        If no ``compressor`` is provided, a default compressor will be used:

        - For numeric arrays, the default is ``ZstdCodec``.
        - For Unicode strings, the default is ``VLenUTF8Codec``.
        - For bytes or objects, the default is ``VLenBytesCodec``.

        These defaults can be changed by modifying the value of ``array.v2_default_compressor`` in [`zarr.config`][zarr.config].
    overwrite : bool, optional
        Whether to raise an error if the store already exists (default is False).

    Returns
    -------
    Array
        Array created from the store.
    """
    return cls._create(
        store,
        # v2 and v3
        shape=shape,
        dtype=dtype,
        zarr_format=zarr_format,
        attributes=attributes,
        fill_value=fill_value,
        # v3 only
        chunk_shape=chunk_shape,
        chunk_key_encoding=chunk_key_encoding,
        codecs=codecs,
        dimension_names=dimension_names,
        # v2 only
        chunks=chunks,
        dimension_separator=dimension_separator,
        order=order,
        filters=filters,
        compressor=compressor,
        # runtime
        overwrite=overwrite,
        config=config,
    )

from_dict classmethod

from_dict(
    store_path: StorePath, data: dict[str, JSON]
) -> Array

Create a Zarr array from a dictionary.

Parameters:

  • store_path (StorePath) –

    The path within the store where the array should be created.

  • data (dict) –

    A dictionary representing the array data. This dictionary should include necessary metadata for the array, such as shape, dtype, fill value, and attributes.

Returns:

  • Array

    The created Zarr array.

Raises:

  • ValueError

    If the dictionary data is invalid or missing required fields for array creation.

Source code in zarr/core/array.py
@classmethod
def from_dict(
    cls,
    store_path: StorePath,
    data: dict[str, JSON],
) -> Array:
    """
    Create a Zarr array from a dictionary.

    Parameters
    ----------
    store_path : StorePath
        The path within the store where the array should be created.

    data : dict
        A dictionary representing the array data. This dictionary should include necessary metadata
        for the array, such as shape, dtype, fill value, and attributes.

    Returns
    -------
    Array
        The created Zarr array.

    Raises
    ------
    ValueError
        If the dictionary data is invalid or missing required fields for array creation.
    """
    async_array = AsyncArray.from_dict(store_path=store_path, data=data)
    return cls(async_array)

get_basic_selection

get_basic_selection(
    selection: BasicSelection = Ellipsis,
    *,
    out: NDBuffer | None = None,
    prototype: BufferPrototype | None = None,
    fields: Fields | None = None,
) -> NDArrayLikeOrScalar

Retrieve data for an item or region of the array.

Parameters:

  • selection (tuple, default: Ellipsis ) –

    A tuple specifying the requested item or region for each dimension of the array. May be any combination of int and/or slice or ellipsis for multidimensional arrays.

  • out (NDBuffer, default: None ) –

    If given, load the selected data directly into this buffer.

  • prototype (BufferPrototype, default: None ) –

    The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to extract data for.

Returns:

  • NDArrayLikeOrScalar

    An array-like or scalar containing the data for the requested region.

Examples:

Setup a 1-dimensional array::

>>> import zarr
>>> import numpy as np
>>> data = np.arange(100, dtype="uint16")
>>> z = zarr.create_array(
>>>        StorePath(MemoryStore(mode="w")),
>>>        shape=data.shape,
>>>        chunks=(3,),
>>>        dtype=data.dtype,
>>>        )
>>> z[:] = data

Retrieve a single item::

>>> z.get_basic_selection(5)
5

Retrieve a region via slicing::

>>> z.get_basic_selection(slice(5))
array([0, 1, 2, 3, 4])
>>> z.get_basic_selection(slice(-5, None))
array([95, 96, 97, 98, 99])
>>> z.get_basic_selection(slice(5, 10))
array([5, 6, 7, 8, 9])
>>> z.get_basic_selection(slice(5, 10, 2))
array([5, 7, 9])
>>> z.get_basic_selection(slice(None, None, 2))
array([  0,  2,  4, ..., 94, 96, 98])

Setup a 3-dimensional array::

>>> data = np.arange(1000).reshape(10, 10, 10)
>>> z = zarr.create_array(
>>>        StorePath(MemoryStore(mode="w")),
>>>        shape=data.shape,
>>>        chunks=(5, 5, 5),
>>>        dtype=data.dtype,
>>>        )
>>> z[:] = data

Retrieve an item::

>>> z.get_basic_selection((1, 2, 3))
123

Retrieve a region via slicing and Ellipsis::

>>> z.get_basic_selection((slice(1, 3), slice(1, 3), 0))
array([[110, 120],
       [210, 220]])
>>> z.get_basic_selection(0, (slice(1, 3), slice(None)))
array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]])
>>> z.get_basic_selection((..., 5))
array([[  2  12  22  32  42  52  62  72  82  92]
       [102 112 122 132 142 152 162 172 182 192]
       ...
       [802 812 822 832 842 852 862 872 882 892]
       [902 912 922 932 942 952 962 972 982 992]]
Notes

Slices with step > 1 are supported, but slices with negative step are not.

For arrays with a structured dtype, see Zarr format 2 for examples of how to use the fields parameter.

This method provides the implementation for accessing data via the square bracket notation (getitem). See __getitem__ for examples using the alternative notation.

Source code in zarr/core/array.py
def get_basic_selection(
    self,
    selection: BasicSelection = Ellipsis,
    *,
    out: NDBuffer | None = None,
    prototype: BufferPrototype | None = None,
    fields: Fields | None = None,
) -> NDArrayLikeOrScalar:
    """Retrieve data for an item or region of the array.

    Parameters
    ----------
    selection : tuple
        A tuple specifying the requested item or region for each dimension of the
        array. May be any combination of int and/or slice or ellipsis for multidimensional arrays.
    out : NDBuffer, optional
        If given, load the selected data directly into this buffer.
    prototype : BufferPrototype, optional
        The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to
        extract data for.

    Returns
    -------
    NDArrayLikeOrScalar
        An array-like or scalar containing the data for the requested region.

    Examples
    --------
    Setup a 1-dimensional array::

        >>> import zarr
        >>> import numpy as np
        >>> data = np.arange(100, dtype="uint16")
        >>> z = zarr.create_array(
        >>>        StorePath(MemoryStore(mode="w")),
        >>>        shape=data.shape,
        >>>        chunks=(3,),
        >>>        dtype=data.dtype,
        >>>        )
        >>> z[:] = data

    Retrieve a single item::

        >>> z.get_basic_selection(5)
        5

    Retrieve a region via slicing::

        >>> z.get_basic_selection(slice(5))
        array([0, 1, 2, 3, 4])
        >>> z.get_basic_selection(slice(-5, None))
        array([95, 96, 97, 98, 99])
        >>> z.get_basic_selection(slice(5, 10))
        array([5, 6, 7, 8, 9])
        >>> z.get_basic_selection(slice(5, 10, 2))
        array([5, 7, 9])
        >>> z.get_basic_selection(slice(None, None, 2))
        array([  0,  2,  4, ..., 94, 96, 98])

    Setup a 3-dimensional array::

        >>> data = np.arange(1000).reshape(10, 10, 10)
        >>> z = zarr.create_array(
        >>>        StorePath(MemoryStore(mode="w")),
        >>>        shape=data.shape,
        >>>        chunks=(5, 5, 5),
        >>>        dtype=data.dtype,
        >>>        )
        >>> z[:] = data

    Retrieve an item::

        >>> z.get_basic_selection((1, 2, 3))
        123

    Retrieve a region via slicing and Ellipsis::

        >>> z.get_basic_selection((slice(1, 3), slice(1, 3), 0))
        array([[110, 120],
               [210, 220]])
        >>> z.get_basic_selection(0, (slice(1, 3), slice(None)))
        array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
               [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]])
        >>> z.get_basic_selection((..., 5))
        array([[  2  12  22  32  42  52  62  72  82  92]
               [102 112 122 132 142 152 162 172 182 192]
               ...
               [802 812 822 832 842 852 862 872 882 892]
               [902 912 922 932 942 952 962 972 982 992]]

    Notes
    -----
    Slices with step > 1 are supported, but slices with negative step are not.

    For arrays with a structured dtype, see Zarr format 2 for examples of how to use
    the `fields` parameter.

    This method provides the implementation for accessing data via the
    square bracket notation (__getitem__). See [`__getitem__`][zarr.Array.__getitem__] for examples
    using the alternative notation.

    Related
    -------
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]

    """

    if prototype is None:
        prototype = default_buffer_prototype()
    return sync(
        self._async_array._get_selection(
            BasicIndexer(selection, self.shape, self.metadata.chunk_grid),
            out=out,
            fields=fields,
            prototype=prototype,
        )
    )

get_block_selection

get_block_selection(
    selection: BasicSelection,
    *,
    out: NDBuffer | None = None,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar

Retrieve a selection of individual items, by providing the indices (coordinates) for each selected item.

Parameters:

  • selection (int or slice or tuple of int or slice) –

    An integer (coordinate) or slice for each dimension of the array.

  • out (NDBuffer, default: None ) –

    If given, load the selected data directly into this buffer.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to extract data for.

  • prototype (BufferPrototype, default: None ) –

    The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

Returns:

  • NDArrayLikeOrScalar

    An array-like or scalar containing the data for the requested block selection.

Examples:

Setup a 2-dimensional array::

>>> import zarr
>>> import numpy as np
>>> data = np.arange(0, 100, dtype="uint16").reshape((10, 10))
>>> z = zarr.create_array(
>>>        StorePath(MemoryStore(mode="w")),
>>>        shape=data.shape,
>>>        chunks=(3, 3),
>>>        dtype=data.dtype,
>>>        )
>>> z[:] = data

Retrieve items by specifying their block coordinates::

>>> z.get_block_selection((1, slice(None)))
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

Which is equivalent to::

>>> z[3:6, :]
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

For convenience, the block selection functionality is also available via the blocks property, e.g.::

>>> z.blocks[1]
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
Notes

Block indexing is a convenience indexing method to work on individual chunks with chunk index slicing. It has the same concept as Dask's Array.blocks indexing.

Slices are supported. However, only with a step size of one.

Block index arrays may be multidimensional to index multidimensional arrays. For example::

>>> z.blocks[0, 1:3]
array([[ 3,  4,  5,  6,  7,  8],
       [13, 14, 15, 16, 17, 18],
       [23, 24, 25, 26, 27, 28]])
Source code in zarr/core/array.py
def get_block_selection(
    self,
    selection: BasicSelection,
    *,
    out: NDBuffer | None = None,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar:
    """Retrieve a selection of individual items, by providing the indices
    (coordinates) for each selected item.

    Parameters
    ----------
    selection : int or slice or tuple of int or slice
        An integer (coordinate) or slice for each dimension of the array.
    out : NDBuffer, optional
        If given, load the selected data directly into this buffer.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to
        extract data for.
    prototype : BufferPrototype, optional
        The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

    Returns
    -------
    NDArrayLikeOrScalar
        An array-like or scalar containing the data for the requested block selection.

    Examples
    --------
    Setup a 2-dimensional array::

        >>> import zarr
        >>> import numpy as np
        >>> data = np.arange(0, 100, dtype="uint16").reshape((10, 10))
        >>> z = zarr.create_array(
        >>>        StorePath(MemoryStore(mode="w")),
        >>>        shape=data.shape,
        >>>        chunks=(3, 3),
        >>>        dtype=data.dtype,
        >>>        )
        >>> z[:] = data

    Retrieve items by specifying their block coordinates::

        >>> z.get_block_selection((1, slice(None)))
        array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
               [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
               [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

    Which is equivalent to::

        >>> z[3:6, :]
        array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
               [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
               [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

    For convenience, the block selection functionality is also available via the
    `blocks` property, e.g.::

        >>> z.blocks[1]
        array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
               [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
               [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

    Notes
    -----
    Block indexing is a convenience indexing method to work on individual chunks
    with chunk index slicing. It has the same concept as Dask's `Array.blocks`
    indexing.

    Slices are supported. However, only with a step size of one.

    Block index arrays may be multidimensional to index multidimensional arrays.
    For example::

        >>> z.blocks[0, 1:3]
        array([[ 3,  4,  5,  6,  7,  8],
               [13, 14, 15, 16, 17, 18],
               [23, 24, 25, 26, 27, 28]])

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]
    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = BlockIndexer(selection, self.shape, self.metadata.chunk_grid)
    return sync(
        self._async_array._get_selection(
            indexer=indexer, out=out, fields=fields, prototype=prototype
        )
    )

get_coordinate_selection

get_coordinate_selection(
    selection: CoordinateSelection,
    *,
    out: NDBuffer | None = None,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar

Retrieve a selection of individual items, by providing the indices (coordinates) for each selected item.

Parameters:

  • selection (tuple) –

    An integer (coordinate) array for each dimension of the array.

  • out (NDBuffer, default: None ) –

    If given, load the selected data directly into this buffer.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to extract data for.

  • prototype (BufferPrototype, default: None ) –

    The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

Returns:

  • NDArrayLikeOrScalar

    An array-like or scalar containing the data for the requested coordinate selection.

Examples:

Setup a 2-dimensional array::

>>> import zarr
>>> import numpy as np
>>> data = np.arange(0, 100, dtype="uint16").reshape((10, 10))
>>> z = zarr.create_array(
>>>        StorePath(MemoryStore(mode="w")),
>>>        shape=data.shape,
>>>        chunks=(3, 3),
>>>        dtype=data.dtype,
>>>        )
>>> z[:] = data

Retrieve items by specifying their coordinates::

>>> z.get_coordinate_selection(([1, 4], [1, 4]))
array([11, 44])

For convenience, the coordinate selection functionality is also available via the vindex property, e.g.::

>>> z.vindex[[1, 4], [1, 4]]
array([11, 44])
Notes

Coordinate indexing is also known as point selection, and is a form of vectorized or inner indexing.

Slices are not supported. Coordinate arrays must be provided for all dimensions of the array.

Coordinate arrays may be multidimensional, in which case the output array will also be multidimensional. Coordinate arrays are broadcast against each other before being applied. The shape of the output will be the same as the shape of each coordinate array after broadcasting.

Source code in zarr/core/array.py
def get_coordinate_selection(
    self,
    selection: CoordinateSelection,
    *,
    out: NDBuffer | None = None,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar:
    """Retrieve a selection of individual items, by providing the indices
    (coordinates) for each selected item.

    Parameters
    ----------
    selection : tuple
        An integer (coordinate) array for each dimension of the array.
    out : NDBuffer, optional
        If given, load the selected data directly into this buffer.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to
        extract data for.
    prototype : BufferPrototype, optional
        The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

    Returns
    -------
    NDArrayLikeOrScalar
        An array-like or scalar containing the data for the requested coordinate selection.

    Examples
    --------
    Setup a 2-dimensional array::

        >>> import zarr
        >>> import numpy as np
        >>> data = np.arange(0, 100, dtype="uint16").reshape((10, 10))
        >>> z = zarr.create_array(
        >>>        StorePath(MemoryStore(mode="w")),
        >>>        shape=data.shape,
        >>>        chunks=(3, 3),
        >>>        dtype=data.dtype,
        >>>        )
        >>> z[:] = data

    Retrieve items by specifying their coordinates::

        >>> z.get_coordinate_selection(([1, 4], [1, 4]))
        array([11, 44])

    For convenience, the coordinate selection functionality is also available via the
    `vindex` property, e.g.::

        >>> z.vindex[[1, 4], [1, 4]]
        array([11, 44])

    Notes
    -----
    Coordinate indexing is also known as point selection, and is a form of vectorized
    or inner indexing.

    Slices are not supported. Coordinate arrays must be provided for all dimensions
    of the array.

    Coordinate arrays may be multidimensional, in which case the output array will
    also be multidimensional. Coordinate arrays are broadcast against each other
    before being applied. The shape of the output will be the same as the shape of
    each coordinate array after broadcasting.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]

    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = CoordinateIndexer(selection, self.shape, self.metadata.chunk_grid)
    out_array = sync(
        self._async_array._get_selection(
            indexer=indexer, out=out, fields=fields, prototype=prototype
        )
    )

    if hasattr(out_array, "shape"):
        # restore shape
        out_array = np.array(out_array).reshape(indexer.sel_shape)
    return out_array

get_mask_selection

get_mask_selection(
    mask: MaskSelection,
    *,
    out: NDBuffer | None = None,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar

Retrieve a selection of individual items, by providing a Boolean array of the same shape as the array against which the selection is being made, where True values indicate a selected item.

Parameters:

  • mask ((ndarray, bool)) –

    A Boolean array of the same shape as the array against which the selection is being made.

  • out (NDBuffer, default: None ) –

    If given, load the selected data directly into this buffer.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to extract data for.

  • prototype (BufferPrototype, default: None ) –

    The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

Returns:

  • NDArrayLikeOrScalar

    An array-like or scalar containing the data for the requested selection.

Examples:

Setup a 2-dimensional array::

>>> import zarr
>>> import numpy as np
>>> data = np.arange(100).reshape(10, 10)
>>> z = zarr.create_array(
>>>        StorePath(MemoryStore(mode="w")),
>>>        shape=data.shape,
>>>        chunks=data.shape,
>>>        dtype=data.dtype,
>>>        )
>>> z[:] = data

Retrieve items by specifying a mask::

>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[1, 1] = True
>>> sel[4, 4] = True
>>> z.get_mask_selection(sel)
array([11, 44])

For convenience, the mask selection functionality is also available via the vindex property, e.g.::

>>> z.vindex[sel]
array([11, 44])
Notes

Mask indexing is a form of vectorized or inner indexing, and is equivalent to coordinate indexing. Internally the mask array is converted to coordinate arrays by calling np.nonzero.

Source code in zarr/core/array.py
def get_mask_selection(
    self,
    mask: MaskSelection,
    *,
    out: NDBuffer | None = None,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar:
    """Retrieve a selection of individual items, by providing a Boolean array of the
    same shape as the array against which the selection is being made, where True
    values indicate a selected item.

    Parameters
    ----------
    mask : ndarray, bool
        A Boolean array of the same shape as the array against which the selection is
        being made.
    out : NDBuffer, optional
        If given, load the selected data directly into this buffer.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to
        extract data for.
    prototype : BufferPrototype, optional
        The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

    Returns
    -------
    NDArrayLikeOrScalar
        An array-like or scalar containing the data for the requested selection.

    Examples
    --------
    Setup a 2-dimensional array::

        >>> import zarr
        >>> import numpy as np
        >>> data = np.arange(100).reshape(10, 10)
        >>> z = zarr.create_array(
        >>>        StorePath(MemoryStore(mode="w")),
        >>>        shape=data.shape,
        >>>        chunks=data.shape,
        >>>        dtype=data.dtype,
        >>>        )
        >>> z[:] = data

    Retrieve items by specifying a mask::

        >>> sel = np.zeros_like(z, dtype=bool)
        >>> sel[1, 1] = True
        >>> sel[4, 4] = True
        >>> z.get_mask_selection(sel)
        array([11, 44])

    For convenience, the mask selection functionality is also available via the
    `vindex` property, e.g.::

        >>> z.vindex[sel]
        array([11, 44])

    Notes
    -----
    Mask indexing is a form of vectorized or inner indexing, and is equivalent to
    coordinate indexing. Internally the mask array is converted to coordinate
    arrays by calling `np.nonzero`.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]
    """

    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = MaskIndexer(mask, self.shape, self.metadata.chunk_grid)
    return sync(
        self._async_array._get_selection(
            indexer=indexer, out=out, fields=fields, prototype=prototype
        )
    )

get_orthogonal_selection

get_orthogonal_selection(
    selection: OrthogonalSelection,
    *,
    out: NDBuffer | None = None,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar

Retrieve data by making a selection for each dimension of the array. For example, if an array has 2 dimensions, allows selecting specific rows and/or columns. The selection for each dimension can be either an integer (indexing a single item), a slice, an array of integers, or a Boolean array where True values indicate a selection.

Parameters:

  • selection (tuple) –

    A selection for each dimension of the array. May be any combination of int, slice, integer array or Boolean array.

  • out (NDBuffer, default: None ) –

    If given, load the selected data directly into this buffer.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to extract data for.

  • prototype (BufferPrototype, default: None ) –

    The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

Returns:

  • NDArrayLikeOrScalar

    An array-like or scalar containing the data for the requested selection.

Examples:

Setup a 2-dimensional array::

>>> import zarr
>>> import numpy as np
>>> data = np.arange(100).reshape(10, 10)
>>> z = zarr.create_array(
>>>        StorePath(MemoryStore(mode="w")),
>>>        shape=data.shape,
>>>        chunks=data.shape,
>>>        dtype=data.dtype,
>>>        )
>>> z[:] = data

Retrieve rows and columns via any combination of int, slice, integer array and/or Boolean array::

>>> z.get_orthogonal_selection(([1, 4], slice(None)))
array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
>>> z.get_orthogonal_selection((slice(None), [1, 4]))
array([[ 1,  4],
       [11, 14],
       [21, 24],
       [31, 34],
       [41, 44],
       [51, 54],
       [61, 64],
       [71, 74],
       [81, 84],
       [91, 94]])
>>> z.get_orthogonal_selection(([1, 4], [1, 4]))
array([[11, 14],
       [41, 44]])
>>> sel = np.zeros(z.shape[0], dtype=bool)
>>> sel[1] = True
>>> sel[4] = True
>>> z.get_orthogonal_selection((sel, sel))
array([[11, 14],
       [41, 44]])

For convenience, the orthogonal selection functionality is also available via the oindex property, e.g.::

>>> z.oindex[[1, 4], :]
array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
>>> z.oindex[:, [1, 4]]
array([[ 1,  4],
       [11, 14],
       [21, 24],
       [31, 34],
       [41, 44],
       [51, 54],
       [61, 64],
       [71, 74],
       [81, 84],
       [91, 94]])
>>> z.oindex[[1, 4], [1, 4]]
array([[11, 14],
       [41, 44]])
>>> sel = np.zeros(z.shape[0], dtype=bool)
>>> sel[1] = True
>>> sel[4] = True
>>> z.oindex[sel, sel]
array([[11, 14],
       [41, 44]])
Notes

Orthogonal indexing is also known as outer indexing.

Slices with step > 1 are supported, but slices with negative step are not.

Source code in zarr/core/array.py
def get_orthogonal_selection(
    self,
    selection: OrthogonalSelection,
    *,
    out: NDBuffer | None = None,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar:
    """Retrieve data by making a selection for each dimension of the array. For
    example, if an array has 2 dimensions, allows selecting specific rows and/or
    columns. The selection for each dimension can be either an integer (indexing a
    single item), a slice, an array of integers, or a Boolean array where True
    values indicate a selection.

    Parameters
    ----------
    selection : tuple
        A selection for each dimension of the array. May be any combination of int,
        slice, integer array or Boolean array.
    out : NDBuffer, optional
        If given, load the selected data directly into this buffer.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to
        extract data for.
    prototype : BufferPrototype, optional
        The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.

    Returns
    -------
    NDArrayLikeOrScalar
        An array-like or scalar containing the data for the requested selection.

    Examples
    --------
    Setup a 2-dimensional array::

        >>> import zarr
        >>> import numpy as np
        >>> data = np.arange(100).reshape(10, 10)
        >>> z = zarr.create_array(
        >>>        StorePath(MemoryStore(mode="w")),
        >>>        shape=data.shape,
        >>>        chunks=data.shape,
        >>>        dtype=data.dtype,
        >>>        )
        >>> z[:] = data

    Retrieve rows and columns via any combination of int, slice, integer array and/or
    Boolean array::

        >>> z.get_orthogonal_selection(([1, 4], slice(None)))
        array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
               [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
        >>> z.get_orthogonal_selection((slice(None), [1, 4]))
        array([[ 1,  4],
               [11, 14],
               [21, 24],
               [31, 34],
               [41, 44],
               [51, 54],
               [61, 64],
               [71, 74],
               [81, 84],
               [91, 94]])
        >>> z.get_orthogonal_selection(([1, 4], [1, 4]))
        array([[11, 14],
               [41, 44]])
        >>> sel = np.zeros(z.shape[0], dtype=bool)
        >>> sel[1] = True
        >>> sel[4] = True
        >>> z.get_orthogonal_selection((sel, sel))
        array([[11, 14],
               [41, 44]])

    For convenience, the orthogonal selection functionality is also available via the
    `oindex` property, e.g.::

        >>> z.oindex[[1, 4], :]
        array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
               [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
        >>> z.oindex[:, [1, 4]]
        array([[ 1,  4],
               [11, 14],
               [21, 24],
               [31, 34],
               [41, 44],
               [51, 54],
               [61, 64],
               [71, 74],
               [81, 84],
               [91, 94]])
        >>> z.oindex[[1, 4], [1, 4]]
        array([[11, 14],
               [41, 44]])
        >>> sel = np.zeros(z.shape[0], dtype=bool)
        >>> sel[1] = True
        >>> sel[4] = True
        >>> z.oindex[sel, sel]
        array([[11, 14],
               [41, 44]])

    Notes
    -----
    Orthogonal indexing is also known as outer indexing.

    Slices with step > 1 are supported, but slices with negative step are not.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]

    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = OrthogonalIndexer(selection, self.shape, self.metadata.chunk_grid)
    return sync(
        self._async_array._get_selection(
            indexer=indexer, out=out, fields=fields, prototype=prototype
        )
    )

info_complete

info_complete() -> Any

Returns all the information about an array, including information from the Store.

In addition to the statically known information like name and zarr_format, this includes additional information like the size of the array in bytes and the number of chunks written.

Note that this method will need to read metadata from the store.

Returns:

  • ArrayInfo
Source code in zarr/core/array.py
def info_complete(self) -> Any:
    """
    Returns all the information about an array, including information from the Store.

    In addition to the statically known information like ``name`` and ``zarr_format``,
    this includes additional information like the size of the array in bytes and
    the number of chunks written.

    Note that this method will need to read metadata from the store.

    Returns
    -------
    ArrayInfo

    Related
    -------
    [zarr.Array.info][] - The statically known subset of metadata about an array.
    """
    return sync(self._async_array.info_complete())

nbytes_stored

nbytes_stored() -> int

Determine the size, in bytes, of the array actually written to the store.

Returns:

  • size ( int ) –
Source code in zarr/core/array.py
def nbytes_stored(self) -> int:
    """
    Determine the size, in bytes, of the array actually written to the store.

    Returns
    -------
    size : int
    """
    return sync(self._async_array.nbytes_stored())

open classmethod

open(store: StoreLike) -> Array

Opens an existing Array from a store.

Parameters:

  • store (StoreLike) –

    Store containing the Array.

Returns:

  • Array

    Array opened from the store.

Source code in zarr/core/array.py
@classmethod
def open(
    cls,
    store: StoreLike,
) -> Array:
    """Opens an existing Array from a store.

    Parameters
    ----------
    store : StoreLike
        Store containing the Array.

    Returns
    -------
    Array
        Array opened from the store.
    """
    async_array = sync(AsyncArray.open(store))
    return cls(async_array)

resize

resize(new_shape: ShapeLike) -> None

Change the shape of the array by growing or shrinking one or more dimensions.

Parameters:

  • new_shape (tuple) –

    New shape of the array.

Notes

If one or more dimensions are shrunk, any chunks falling outside the new array shape will be deleted from the underlying store. However, it is noteworthy that the chunks partially falling inside the new array (i.e. boundary chunks) will remain intact, and therefore, the data falling outside the new array but inside the boundary chunks would be restored by a subsequent resize operation that grows the array size.

Examples:

>>> import zarr
>>> z = zarr.zeros(shape=(10000, 10000),
>>>                chunk_shape=(1000, 1000),
>>>                dtype="i4",)
>>> z.shape
(10000, 10000)
>>> z = z.resize(20000, 1000)
>>> z.shape
(20000, 1000)
>>> z2 = z.resize(50, 50)
>>> z.shape
(20000, 1000)
>>> z2.shape
(50, 50)
Source code in zarr/core/array.py
def resize(self, new_shape: ShapeLike) -> None:
    """
    Change the shape of the array by growing or shrinking one or more
    dimensions.

    Parameters
    ----------
    new_shape : tuple
        New shape of the array.

    Notes
    -----
    If one or more dimensions are shrunk, any chunks falling outside the
    new array shape will be deleted from the underlying store.
    However, it is noteworthy that the chunks partially falling inside the new array
    (i.e. boundary chunks) will remain intact, and therefore,
    the data falling outside the new array but inside the boundary chunks
    would be restored by a subsequent resize operation that grows the array size.

    Examples
    --------
    >>> import zarr
    >>> z = zarr.zeros(shape=(10000, 10000),
    >>>                chunk_shape=(1000, 1000),
    >>>                dtype="i4",)
    >>> z.shape
    (10000, 10000)
    >>> z = z.resize(20000, 1000)
    >>> z.shape
    (20000, 1000)
    >>> z2 = z.resize(50, 50)
    >>> z.shape
    (20000, 1000)
    >>> z2.shape
    (50, 50)
    """
    sync(self._async_array.resize(new_shape))

set_basic_selection

set_basic_selection(
    selection: BasicSelection,
    value: ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None

Modify data for an item or region of the array.

Parameters:

  • selection (tuple) –

    A tuple specifying the requested item or region for each dimension of the array. May be any combination of int and/or slice or ellipsis for multidimensional arrays.

  • value (ArrayLike) –

    An array-like containing values to be stored into the array.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to set data for.

  • prototype (BufferPrototype, default: None ) –

    The prototype of the buffer used for setting the data. If not provided, the default buffer prototype is used.

Examples:

Setup a 1-dimensional array::

>>> import zarr
>>> z = zarr.zeros(
>>>        shape=(100,),
>>>        store=StorePath(MemoryStore(mode="w")),
>>>        chunk_shape=(100,),
>>>        dtype="i4",
>>>       )

Set all array elements to the same scalar value::

>>> z.set_basic_selection(..., 42)
>>> z[...]
array([42, 42, 42, ..., 42, 42, 42])

Set a portion of the array::

>>> z.set_basic_selection(slice(10), np.arange(10))
>>> z.set_basic_selection(slice(-10, None), np.arange(10)[::-1])
>>> z[...]
array([ 0, 1, 2, ..., 2, 1, 0])

Setup a 2-dimensional array::

>>> z = zarr.zeros(
>>>        shape=(5, 5),
>>>        store=StorePath(MemoryStore(mode="w")),
>>>        chunk_shape=(5, 5),
>>>        dtype="i4",
>>>       )

Set all array elements to the same scalar value::

>>> z.set_basic_selection(..., 42)

Set a portion of the array::

>>> z.set_basic_selection((0, slice(None)), np.arange(z.shape[1]))
>>> z.set_basic_selection((slice(None), 0), np.arange(z.shape[0]))
>>> z[...]
array([[ 0,  1,  2,  3,  4],
       [ 1, 42, 42, 42, 42],
       [ 2, 42, 42, 42, 42],
       [ 3, 42, 42, 42, 42],
       [ 4, 42, 42, 42, 42]])
Notes

For arrays with a structured dtype, see Zarr format 2 for examples of how to use the fields parameter.

This method provides the underlying implementation for modifying data via square bracket notation, see __setitem__ for equivalent examples using the alternative notation.

Source code in zarr/core/array.py
def set_basic_selection(
    self,
    selection: BasicSelection,
    value: npt.ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None:
    """Modify data for an item or region of the array.

    Parameters
    ----------
    selection : tuple
        A tuple specifying the requested item or region for each dimension of the
        array. May be any combination of int and/or slice or ellipsis for multidimensional arrays.
    value : npt.ArrayLike
        An array-like containing values to be stored into the array.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to set
        data for.
    prototype : BufferPrototype, optional
        The prototype of the buffer used for setting the data. If not provided, the
        default buffer prototype is used.

    Examples
    --------
    Setup a 1-dimensional array::

        >>> import zarr
        >>> z = zarr.zeros(
        >>>        shape=(100,),
        >>>        store=StorePath(MemoryStore(mode="w")),
        >>>        chunk_shape=(100,),
        >>>        dtype="i4",
        >>>       )

    Set all array elements to the same scalar value::

        >>> z.set_basic_selection(..., 42)
        >>> z[...]
        array([42, 42, 42, ..., 42, 42, 42])

    Set a portion of the array::

        >>> z.set_basic_selection(slice(10), np.arange(10))
        >>> z.set_basic_selection(slice(-10, None), np.arange(10)[::-1])
        >>> z[...]
        array([ 0, 1, 2, ..., 2, 1, 0])

    Setup a 2-dimensional array::

        >>> z = zarr.zeros(
        >>>        shape=(5, 5),
        >>>        store=StorePath(MemoryStore(mode="w")),
        >>>        chunk_shape=(5, 5),
        >>>        dtype="i4",
        >>>       )

    Set all array elements to the same scalar value::

        >>> z.set_basic_selection(..., 42)

    Set a portion of the array::

        >>> z.set_basic_selection((0, slice(None)), np.arange(z.shape[1]))
        >>> z.set_basic_selection((slice(None), 0), np.arange(z.shape[0]))
        >>> z[...]
        array([[ 0,  1,  2,  3,  4],
               [ 1, 42, 42, 42, 42],
               [ 2, 42, 42, 42, 42],
               [ 3, 42, 42, 42, 42],
               [ 4, 42, 42, 42, 42]])

    Notes
    -----
    For arrays with a structured dtype, see Zarr format 2 for examples of how to use
    the `fields` parameter.

    This method provides the underlying implementation for modifying data via square
    bracket notation, see [`__setitem__`][zarr.Array.__setitem__] for equivalent examples using the
    alternative notation.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]

    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = BasicIndexer(selection, self.shape, self.metadata.chunk_grid)
    sync(self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype))

set_block_selection

set_block_selection(
    selection: BasicSelection,
    value: ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None

Modify a selection of individual blocks, by providing the chunk indices (coordinates) for each block to be modified.

Parameters:

  • selection (tuple) –

    An integer (coordinate) or slice for each dimension of the array.

  • value (ArrayLike) –

    An array-like containing the data to be stored in the block selection.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to set data for.

  • prototype (BufferPrototype, default: None ) –

    The prototype of the buffer used for setting the data. If not provided, the default buffer prototype is used.

Examples:

Set up a 2-dimensional array::

>>> import zarr
>>> z = zarr.zeros(
>>>        shape=(6, 6),
>>>        store=StorePath(MemoryStore(mode="w")),
>>>        chunk_shape=(2, 2),
>>>        dtype="i4",
>>>       )

Set data for a selection of items::

>>> z.set_block_selection((1, 0), 1)
>>> z[...]
array([[0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [1, 1, 0, 0, 0, 0],
       [1, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0]])

For convenience, this functionality is also available via the blocks property. E.g.::

>>> z.blocks[2, 1] = 4
>>> z[...]
array([[0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [1, 1, 0, 0, 0, 0],
       [1, 1, 0, 0, 0, 0],
       [0, 0, 4, 4, 0, 0],
       [0, 0, 4, 4, 0, 0]])

>>> z.blocks[:, 2] = 7
>>> z[...]
array([[0, 0, 0, 0, 7, 7],
       [0, 0, 0, 0, 7, 7],
       [1, 1, 0, 0, 7, 7],
       [1, 1, 0, 0, 7, 7],
       [0, 0, 4, 4, 7, 7],
       [0, 0, 4, 4, 7, 7]])
Notes

Block indexing is a convenience indexing method to work on individual chunks with chunk index slicing. It has the same concept as Dask's Array.blocks indexing.

Slices are supported. However, only with a step size of one.

Source code in zarr/core/array.py
def set_block_selection(
    self,
    selection: BasicSelection,
    value: npt.ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None:
    """Modify a selection of individual blocks, by providing the chunk indices
    (coordinates) for each block to be modified.

    Parameters
    ----------
    selection : tuple
        An integer (coordinate) or slice for each dimension of the array.
    value : npt.ArrayLike
        An array-like containing the data to be stored in the block selection.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to set
        data for.
    prototype : BufferPrototype, optional
        The prototype of the buffer used for setting the data. If not provided, the
        default buffer prototype is used.

    Examples
    --------
    Set up a 2-dimensional array::

        >>> import zarr
        >>> z = zarr.zeros(
        >>>        shape=(6, 6),
        >>>        store=StorePath(MemoryStore(mode="w")),
        >>>        chunk_shape=(2, 2),
        >>>        dtype="i4",
        >>>       )

    Set data for a selection of items::

        >>> z.set_block_selection((1, 0), 1)
        >>> z[...]
        array([[0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0],
               [1, 1, 0, 0, 0, 0],
               [1, 1, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0]])

    For convenience, this functionality is also available via the `blocks` property.
    E.g.::

        >>> z.blocks[2, 1] = 4
        >>> z[...]
        array([[0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0],
               [1, 1, 0, 0, 0, 0],
               [1, 1, 0, 0, 0, 0],
               [0, 0, 4, 4, 0, 0],
               [0, 0, 4, 4, 0, 0]])

        >>> z.blocks[:, 2] = 7
        >>> z[...]
        array([[0, 0, 0, 0, 7, 7],
               [0, 0, 0, 0, 7, 7],
               [1, 1, 0, 0, 7, 7],
               [1, 1, 0, 0, 7, 7],
               [0, 0, 4, 4, 7, 7],
               [0, 0, 4, 4, 7, 7]])

    Notes
    -----
    Block indexing is a convenience indexing method to work on individual chunks
    with chunk index slicing. It has the same concept as Dask's `Array.blocks`
    indexing.

    Slices are supported. However, only with a step size of one.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]

    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = BlockIndexer(selection, self.shape, self.metadata.chunk_grid)
    sync(self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype))

set_coordinate_selection

set_coordinate_selection(
    selection: CoordinateSelection,
    value: ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None

Modify a selection of individual items, by providing the indices (coordinates) for each item to be modified.

Parameters:

  • selection (tuple) –

    An integer (coordinate) array for each dimension of the array.

  • value (ArrayLike) –

    An array-like containing values to be stored into the array.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to set data for.

Examples:

Setup a 2-dimensional array::

>>> import zarr
>>> z = zarr.zeros(
>>>        shape=(5, 5),
>>>        store=StorePath(MemoryStore(mode="w")),
>>>        chunk_shape=(5, 5),
>>>        dtype="i4",
>>>       )

Set data for a selection of items::

>>> z.set_coordinate_selection(([1, 4], [1, 4]), 1)
>>> z[...]
array([[0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 1]])

For convenience, this functionality is also available via the vindex property. E.g.::

>>> z.vindex[[1, 4], [1, 4]] = 2
>>> z[...]
array([[0, 0, 0, 0, 0],
       [0, 2, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 2]])
Notes

Coordinate indexing is also known as point selection, and is a form of vectorized or inner indexing.

Slices are not supported. Coordinate arrays must be provided for all dimensions of the array.

Source code in zarr/core/array.py
def set_coordinate_selection(
    self,
    selection: CoordinateSelection,
    value: npt.ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None:
    """Modify a selection of individual items, by providing the indices (coordinates)
    for each item to be modified.

    Parameters
    ----------
    selection : tuple
        An integer (coordinate) array for each dimension of the array.
    value : npt.ArrayLike
        An array-like containing values to be stored into the array.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to set
        data for.

    Examples
    --------
    Setup a 2-dimensional array::

        >>> import zarr
        >>> z = zarr.zeros(
        >>>        shape=(5, 5),
        >>>        store=StorePath(MemoryStore(mode="w")),
        >>>        chunk_shape=(5, 5),
        >>>        dtype="i4",
        >>>       )

    Set data for a selection of items::

        >>> z.set_coordinate_selection(([1, 4], [1, 4]), 1)
        >>> z[...]
        array([[0, 0, 0, 0, 0],
               [0, 1, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 1]])

    For convenience, this functionality is also available via the `vindex` property.
    E.g.::

        >>> z.vindex[[1, 4], [1, 4]] = 2
        >>> z[...]
        array([[0, 0, 0, 0, 0],
               [0, 2, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 2]])

    Notes
    -----
    Coordinate indexing is also known as point selection, and is a form of vectorized
    or inner indexing.

    Slices are not supported. Coordinate arrays must be provided for all dimensions
    of the array.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]

    """
    if prototype is None:
        prototype = default_buffer_prototype()
    # setup indexer
    indexer = CoordinateIndexer(selection, self.shape, self.metadata.chunk_grid)

    # handle value - need ndarray-like flatten value
    if not is_scalar(value, self.dtype):
        try:
            from numcodecs.compat import ensure_ndarray_like

            value = ensure_ndarray_like(value)  # TODO replace with agnostic
        except TypeError:
            # Handle types like `list` or `tuple`
            value = np.array(value)  # TODO replace with agnostic
    if hasattr(value, "shape") and len(value.shape) > 1:
        value = np.array(value).reshape(-1)

    if not is_scalar(value, self.dtype) and (
        isinstance(value, NDArrayLike) and indexer.shape != value.shape
    ):
        raise ValueError(
            f"Attempting to set a selection of {indexer.sel_shape[0]} "
            f"elements with an array of {value.shape[0]} elements."
        )

    sync(self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype))

set_mask_selection

set_mask_selection(
    mask: MaskSelection,
    value: ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None

Modify a selection of individual items, by providing a Boolean array of the same shape as the array against which the selection is being made, where True values indicate a selected item.

Parameters:

  • mask ((ndarray, bool)) –

    A Boolean array of the same shape as the array against which the selection is being made.

  • value (ArrayLike) –

    An array-like containing values to be stored into the array.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to set data for.

Examples:

Setup a 2-dimensional array::

>>> import zarr
>>> z = zarr.zeros(
>>>        shape=(5, 5),
>>>        store=StorePath(MemoryStore(mode="w")),
>>>        chunk_shape=(5, 5),
>>>        dtype="i4",
>>>       )

Set data for a selection of items::

>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[1, 1] = True
>>> sel[4, 4] = True
>>> z.set_mask_selection(sel, 1)
>>> z[...]
array([[0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 1]])

For convenience, this functionality is also available via the vindex property. E.g.::

>>> z.vindex[sel] = 2
>>> z[...]
array([[0, 0, 0, 0, 0],
       [0, 2, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 2]])
Notes

Mask indexing is a form of vectorized or inner indexing, and is equivalent to coordinate indexing. Internally the mask array is converted to coordinate arrays by calling np.nonzero.

Source code in zarr/core/array.py
def set_mask_selection(
    self,
    mask: MaskSelection,
    value: npt.ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None:
    """Modify a selection of individual items, by providing a Boolean array of the
    same shape as the array against which the selection is being made, where True
    values indicate a selected item.

    Parameters
    ----------
    mask : ndarray, bool
        A Boolean array of the same shape as the array against which the selection is
        being made.
    value : npt.ArrayLike
        An array-like containing values to be stored into the array.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to set
        data for.

    Examples
    --------
    Setup a 2-dimensional array::

        >>> import zarr
        >>> z = zarr.zeros(
        >>>        shape=(5, 5),
        >>>        store=StorePath(MemoryStore(mode="w")),
        >>>        chunk_shape=(5, 5),
        >>>        dtype="i4",
        >>>       )

    Set data for a selection of items::

        >>> sel = np.zeros_like(z, dtype=bool)
        >>> sel[1, 1] = True
        >>> sel[4, 4] = True
        >>> z.set_mask_selection(sel, 1)
        >>> z[...]
        array([[0, 0, 0, 0, 0],
               [0, 1, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 1]])

    For convenience, this functionality is also available via the `vindex` property.
    E.g.::

        >>> z.vindex[sel] = 2
        >>> z[...]
        array([[0, 0, 0, 0, 0],
               [0, 2, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 2]])

    Notes
    -----
    Mask indexing is a form of vectorized or inner indexing, and is equivalent to
    coordinate indexing. Internally the mask array is converted to coordinate
    arrays by calling `np.nonzero`.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [set_orthogonal_selection][zarr.Array.set_orthogonal_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]

    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = MaskIndexer(mask, self.shape, self.metadata.chunk_grid)
    sync(self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype))

set_orthogonal_selection

set_orthogonal_selection(
    selection: OrthogonalSelection,
    value: ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None

Modify data via a selection for each dimension of the array.

Parameters:

  • selection (tuple) –

    A selection for each dimension of the array. May be any combination of int, slice, integer array or Boolean array.

  • value (ArrayLike) –

    An array-like array containing the data to be stored in the array.

  • fields (str or sequence of str, default: None ) –

    For arrays with a structured dtype, one or more fields can be specified to set data for.

  • prototype (BufferPrototype, default: None ) –

    The prototype of the buffer used for setting the data. If not provided, the default buffer prototype is used.

Examples:

Setup a 2-dimensional array::

>>> import zarr
>>> z = zarr.zeros(
>>>        shape=(5, 5),
>>>        store=StorePath(MemoryStore(mode="w")),
>>>        chunk_shape=(5, 5),
>>>        dtype="i4",
>>>       )

Set data for a selection of rows::

>>> z.set_orthogonal_selection(([1, 4], slice(None)), 1)
>>> z[...]
array([[0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1]])

Set data for a selection of columns::

>>> z.set_orthogonal_selection((slice(None), [1, 4]), 2)
>>> z[...]
array([[0, 2, 0, 0, 2],
       [1, 2, 1, 1, 2],
       [0, 2, 0, 0, 2],
       [0, 2, 0, 0, 2],
       [1, 2, 1, 1, 2]])

Set data for a selection of rows and columns::

>>> z.set_orthogonal_selection(([1, 4], [1, 4]), 3)
>>> z[...]
array([[0, 2, 0, 0, 2],
       [1, 3, 1, 1, 3],
       [0, 2, 0, 0, 2],
       [0, 2, 0, 0, 2],
       [1, 3, 1, 1, 3]])

Set data from a 2D array::

>>> values = np.arange(10).reshape(2, 5)
>>> z.set_orthogonal_selection(([0, 3], ...), values)
>>> z[...]
array([[0, 1, 2, 3, 4],
       [1, 3, 1, 1, 3],
       [0, 2, 0, 0, 2],
       [5, 6, 7, 8, 9],
       [1, 3, 1, 1, 3]])

For convenience, this functionality is also available via the oindex property. E.g.::

>>> z.oindex[[1, 4], [1, 4]] = 4
>>> z[...]
array([[0, 1, 2, 3, 4],
       [1, 4, 1, 1, 4],
       [0, 2, 0, 0, 2],
       [5, 6, 7, 8, 9],
       [1, 4, 1, 1, 4]])
Notes

Orthogonal indexing is also known as outer indexing.

Slices with step > 1 are supported, but slices with negative step are not.

Source code in zarr/core/array.py
def set_orthogonal_selection(
    self,
    selection: OrthogonalSelection,
    value: npt.ArrayLike,
    *,
    fields: Fields | None = None,
    prototype: BufferPrototype | None = None,
) -> None:
    """Modify data via a selection for each dimension of the array.

    Parameters
    ----------
    selection : tuple
        A selection for each dimension of the array. May be any combination of int,
        slice, integer array or Boolean array.
    value : npt.ArrayLike
        An array-like array containing the data to be stored in the array.
    fields : str or sequence of str, optional
        For arrays with a structured dtype, one or more fields can be specified to set
        data for.
    prototype : BufferPrototype, optional
        The prototype of the buffer used for setting the data. If not provided, the
        default buffer prototype is used.

    Examples
    --------
    Setup a 2-dimensional array::

        >>> import zarr
        >>> z = zarr.zeros(
        >>>        shape=(5, 5),
        >>>        store=StorePath(MemoryStore(mode="w")),
        >>>        chunk_shape=(5, 5),
        >>>        dtype="i4",
        >>>       )


    Set data for a selection of rows::

        >>> z.set_orthogonal_selection(([1, 4], slice(None)), 1)
        >>> z[...]
        array([[0, 0, 0, 0, 0],
               [1, 1, 1, 1, 1],
               [0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0],
               [1, 1, 1, 1, 1]])

    Set data for a selection of columns::

        >>> z.set_orthogonal_selection((slice(None), [1, 4]), 2)
        >>> z[...]
        array([[0, 2, 0, 0, 2],
               [1, 2, 1, 1, 2],
               [0, 2, 0, 0, 2],
               [0, 2, 0, 0, 2],
               [1, 2, 1, 1, 2]])

    Set data for a selection of rows and columns::

        >>> z.set_orthogonal_selection(([1, 4], [1, 4]), 3)
        >>> z[...]
        array([[0, 2, 0, 0, 2],
               [1, 3, 1, 1, 3],
               [0, 2, 0, 0, 2],
               [0, 2, 0, 0, 2],
               [1, 3, 1, 1, 3]])

    Set data from a 2D array::

        >>> values = np.arange(10).reshape(2, 5)
        >>> z.set_orthogonal_selection(([0, 3], ...), values)
        >>> z[...]
        array([[0, 1, 2, 3, 4],
               [1, 3, 1, 1, 3],
               [0, 2, 0, 0, 2],
               [5, 6, 7, 8, 9],
               [1, 3, 1, 1, 3]])

    For convenience, this functionality is also available via the `oindex` property.
    E.g.::

        >>> z.oindex[[1, 4], [1, 4]] = 4
        >>> z[...]
        array([[0, 1, 2, 3, 4],
               [1, 4, 1, 1, 4],
               [0, 2, 0, 0, 2],
               [5, 6, 7, 8, 9],
               [1, 4, 1, 1, 4]])

    Notes
    -----
    Orthogonal indexing is also known as outer indexing.

    Slices with step > 1 are supported, but slices with negative step are not.

    Related
    -------
    [get_basic_selection][zarr.Array.get_basic_selection],
    [set_basic_selection][zarr.Array.set_basic_selection],
    [get_mask_selection][zarr.Array.get_mask_selection],
    [set_mask_selection][zarr.Array.set_mask_selection],
    [get_coordinate_selection][zarr.Array.get_coordinate_selection],
    [set_coordinate_selection][zarr.Array.set_coordinate_selection],
    [get_orthogonal_selection][zarr.Array.get_orthogonal_selection],
    [get_block_selection][zarr.Array.get_block_selection],
    [set_block_selection][zarr.Array.set_block_selection],
    [vindex][zarr.Array.vindex], [oindex][zarr.Array.oindex],
    [blocks][zarr.Array.blocks], [__getitem__][zarr.Array.__getitem__],
    [__setitem__][zarr.Array.__setitem__]
    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = OrthogonalIndexer(selection, self.shape, self.metadata.chunk_grid)
    return sync(
        self._async_array._set_selection(indexer, value, fields=fields, prototype=prototype)
    )

update_attributes

update_attributes(new_attributes: dict[str, JSON]) -> Array

Update the array's attributes.

Parameters:

  • new_attributes (dict) –

    A dictionary of new attributes to update or add to the array. The keys represent attribute names, and the values must be JSON-compatible.

Returns:

  • Array

    The array with the updated attributes.

Raises:

  • ValueError

    If the attributes are invalid or incompatible with the array's metadata.

Notes
  • The updated attributes will be merged with existing attributes, and any conflicts will be overwritten by the new values.
Source code in zarr/core/array.py
def update_attributes(self, new_attributes: dict[str, JSON]) -> Array:
    """
    Update the array's attributes.

    Parameters
    ----------
    new_attributes : dict
        A dictionary of new attributes to update or add to the array. The keys represent attribute
        names, and the values must be JSON-compatible.

    Returns
    -------
    Array
        The array with the updated attributes.

    Raises
    ------
    ValueError
        If the attributes are invalid or incompatible with the array's metadata.

    Notes
    -----
    - The updated attributes will be merged with existing attributes, and any conflicts will be
      overwritten by the new values.
    """
    # TODO: remove this cast when type inference improves
    new_array = sync(self._async_array.update_attributes(new_attributes))
    # TODO: remove this cast when type inference improves
    _new_array = cast("AsyncArray[ArrayV2Metadata] | AsyncArray[ArrayV3Metadata]", new_array)
    return type(self)(_new_array)

zarr.AsyncArray dataclass

Bases: Generic[T_ArrayMetadata]

An asynchronous array class representing a chunked array stored in a Zarr store.

Parameters:

  • metadata (ArrayMetadata) –

    The metadata of the array.

  • store_path (StorePath) –

    The path to the Zarr store.

  • config (ArrayConfigLike, default: None ) –

    The runtime configuration of the array, by default None.

Attributes:

  • metadata (ArrayMetadata) –

    The metadata of the array.

  • store_path (StorePath) –

    The path to the Zarr store.

  • codec_pipeline (CodecPipeline) –

    The codec pipeline used for encoding and decoding chunks.

  • _config (ArrayConfig) –

    The runtime configuration of the array.

Source code in zarr/core/array.py
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
@dataclass(frozen=True)
class AsyncArray(Generic[T_ArrayMetadata]):
    """
    An asynchronous array class representing a chunked array stored in a Zarr store.

    Parameters
    ----------
    metadata : ArrayMetadata
        The metadata of the array.
    store_path : StorePath
        The path to the Zarr store.
    config : ArrayConfigLike, optional
        The runtime configuration of the array, by default None.

    Attributes
    ----------
    metadata : ArrayMetadata
        The metadata of the array.
    store_path : StorePath
        The path to the Zarr store.
    codec_pipeline : CodecPipeline
        The codec pipeline used for encoding and decoding chunks.
    _config : ArrayConfig
        The runtime configuration of the array.
    """

    metadata: T_ArrayMetadata
    store_path: StorePath
    codec_pipeline: CodecPipeline = field(init=False)
    _config: ArrayConfig

    @overload
    def __init__(
        self: AsyncArray[ArrayV2Metadata],
        metadata: ArrayV2Metadata | ArrayV2MetadataDict,
        store_path: StorePath,
        config: ArrayConfigLike | None = None,
    ) -> None: ...

    @overload
    def __init__(
        self: AsyncArray[ArrayV3Metadata],
        metadata: ArrayV3Metadata | ArrayV3MetadataDict,
        store_path: StorePath,
        config: ArrayConfigLike | None = None,
    ) -> None: ...

    def __init__(
        self,
        metadata: ArrayMetadata | ArrayMetadataDict,
        store_path: StorePath,
        config: ArrayConfigLike | None = None,
    ) -> None:
        metadata_parsed = parse_array_metadata(metadata)
        config_parsed = parse_array_config(config)

        object.__setattr__(self, "metadata", metadata_parsed)
        object.__setattr__(self, "store_path", store_path)
        object.__setattr__(self, "_config", config_parsed)
        object.__setattr__(
            self,
            "codec_pipeline",
            create_codec_pipeline(metadata=metadata_parsed, store=store_path.store),
        )

    # this overload defines the function signature when zarr_format is 2
    @overload
    @classmethod
    async def create(
        cls,
        store: StoreLike,
        *,
        # v2 and v3
        shape: ShapeLike,
        dtype: ZDTypeLike,
        zarr_format: Literal[2],
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        attributes: dict[str, JSON] | None = None,
        chunks: ShapeLike | None = None,
        dimension_separator: Literal[".", "/"] | None = None,
        order: MemoryOrder | None = None,
        filters: list[dict[str, JSON]] | None = None,
        compressor: CompressorLikev2 | Literal["auto"] = "auto",
        # runtime
        overwrite: bool = False,
        data: npt.ArrayLike | None = None,
        config: ArrayConfigLike | None = None,
    ) -> AsyncArray[ArrayV2Metadata]: ...

    # this overload defines the function signature when zarr_format is 3
    @overload
    @classmethod
    async def create(
        cls,
        store: StoreLike,
        *,
        # v2 and v3
        shape: ShapeLike,
        dtype: ZDTypeLike,
        zarr_format: Literal[3],
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        attributes: dict[str, JSON] | None = None,
        # v3 only
        chunk_shape: ShapeLike | None = None,
        chunk_key_encoding: (
            ChunkKeyEncoding
            | tuple[Literal["default"], Literal[".", "/"]]
            | tuple[Literal["v2"], Literal[".", "/"]]
            | None
        ) = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        # runtime
        overwrite: bool = False,
        data: npt.ArrayLike | None = None,
        config: ArrayConfigLike | None = None,
    ) -> AsyncArray[ArrayV3Metadata]: ...

    @overload
    @classmethod
    async def create(
        cls,
        store: StoreLike,
        *,
        # v2 and v3
        shape: ShapeLike,
        dtype: ZDTypeLike,
        zarr_format: Literal[3] = 3,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        attributes: dict[str, JSON] | None = None,
        # v3 only
        chunk_shape: ShapeLike | None = None,
        chunk_key_encoding: (
            ChunkKeyEncoding
            | tuple[Literal["default"], Literal[".", "/"]]
            | tuple[Literal["v2"], Literal[".", "/"]]
            | None
        ) = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        # runtime
        overwrite: bool = False,
        data: npt.ArrayLike | None = None,
        config: ArrayConfigLike | None = None,
    ) -> AsyncArray[ArrayV3Metadata]: ...

    @overload
    @classmethod
    async def create(
        cls,
        store: StoreLike,
        *,
        # v2 and v3
        shape: ShapeLike,
        dtype: ZDTypeLike,
        zarr_format: ZarrFormat,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        attributes: dict[str, JSON] | None = None,
        # v3 only
        chunk_shape: ShapeLike | None = None,
        chunk_key_encoding: (
            ChunkKeyEncoding
            | tuple[Literal["default"], Literal[".", "/"]]
            | tuple[Literal["v2"], Literal[".", "/"]]
            | None
        ) = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        # v2 only
        chunks: ShapeLike | None = None,
        dimension_separator: Literal[".", "/"] | None = None,
        order: MemoryOrder | None = None,
        filters: list[dict[str, JSON]] | None = None,
        compressor: CompressorLike = "auto",
        # runtime
        overwrite: bool = False,
        data: npt.ArrayLike | None = None,
        config: ArrayConfigLike | None = None,
    ) -> AsyncArray[ArrayV3Metadata] | AsyncArray[ArrayV2Metadata]: ...

    @classmethod
    @deprecated("Use zarr.api.asynchronous.create_array instead.", category=ZarrDeprecationWarning)
    async def create(
        cls,
        store: StoreLike,
        *,
        # v2 and v3
        shape: ShapeLike,
        dtype: ZDTypeLike,
        zarr_format: ZarrFormat = 3,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        attributes: dict[str, JSON] | None = None,
        # v3 only
        chunk_shape: ShapeLike | None = None,
        chunk_key_encoding: (
            ChunkKeyEncodingLike
            | tuple[Literal["default"], Literal[".", "/"]]
            | tuple[Literal["v2"], Literal[".", "/"]]
            | None
        ) = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        # v2 only
        chunks: ShapeLike | None = None,
        dimension_separator: Literal[".", "/"] | None = None,
        order: MemoryOrder | None = None,
        filters: list[dict[str, JSON]] | None = None,
        compressor: CompressorLike = "auto",
        # runtime
        overwrite: bool = False,
        data: npt.ArrayLike | None = None,
        config: ArrayConfigLike | None = None,
    ) -> AsyncArray[ArrayV2Metadata] | AsyncArray[ArrayV3Metadata]:
        """Method to create a new asynchronous array instance.

        !!! warning "Deprecated"
            `AsyncArray.create()` is deprecated since v3.0.0 and will be removed in a future release.
            Use [`zarr.api.asynchronous.create_array`][] instead.

        Parameters
        ----------
        store : StoreLike
            The store where the array will be created.
        shape : ShapeLike
            The shape of the array.
        dtype : ZDTypeLike
            The data type of the array.
        zarr_format : ZarrFormat, optional
            The Zarr format version (default is 3).
        fill_value : Any, optional
            The fill value of the array (default is None).
        attributes : dict[str, JSON], optional
            The attributes of the array (default is None).
        chunk_shape : tuple[int, ...], optional
            The shape of the array's chunks
            Zarr format 3 only. Zarr format 2 arrays should use `chunks` instead.
            If not specified, default are guessed based on the shape and dtype.
        chunk_key_encoding : ChunkKeyEncodingLike, optional
            A specification of how the chunk keys are represented in storage.
            Zarr format 3 only. Zarr format 2 arrays should use `dimension_separator` instead.
            Default is ``("default", "/")``.
        codecs : Sequence of Codecs or dicts, optional
            An iterable of Codec or dict serializations of Codecs. The elements of
            this collection specify the transformation from array values to stored bytes.
            Zarr format 3 only. Zarr format 2 arrays should use ``filters`` and ``compressor`` instead.

            If no codecs are provided, default codecs will be used:
        dimension_names : Iterable[str | None], optional
            The names of the dimensions (default is None).
            Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
        chunks : ShapeLike, optional
            The shape of the array's chunks.
            Zarr format 2 only. Zarr format 3 arrays should use ``chunk_shape`` instead.
            If not specified, default are guessed based on the shape and dtype.
        dimension_separator : Literal[".", "/"], optional
            The dimension separator (default is ".").
            Zarr format 2 only. Zarr format 3 arrays should use ``chunk_key_encoding`` instead.
        order : Literal["C", "F"], optional
            The memory of the array (default is "C").
            If ``zarr_format`` is 2, this parameter sets the memory order of the array.
            If ``zarr_format`` is 3, then this parameter is deprecated, because memory order
            is a runtime parameter for Zarr 3 arrays. The recommended way to specify the memory
            order for Zarr 3 arrays is via the ``config`` parameter, e.g. ``{'config': 'C'}``.
        filters : Iterable[Codec] | Literal["auto"], optional
            Iterable of filters to apply to each chunk of the array, in order, before serializing that
            chunk to bytes.

            For Zarr format 3, a "filter" is a codec that takes an array and returns an array,
            and these values must be instances of [`zarr.abc.codec.ArrayArrayCodec`][], or a
            dict representations of [`zarr.abc.codec.ArrayArrayCodec`][].

            For Zarr format 2, a "filter" can be any numcodecs codec; you should ensure that the
            the order if your filters is consistent with the behavior of each filter.

            The default value of ``"auto"`` instructs Zarr to use a default used based on the data
            type of the array and the Zarr format specified. For all data types in Zarr V3, and most
            data types in Zarr V2, the default filters are empty. The only cases where default filters
            are not empty is when the Zarr format is 2, and the data type is a variable-length data type like
            [`zarr.dtype.VariableLengthUTF8`][] or [`zarr.dtype.VariableLengthUTF8`][]. In these cases,
            the default filters contains a single element which is a codec specific to that particular data type.

            To create an array with no filters, provide an empty iterable or the value ``None``.
        compressor : dict[str, JSON], optional
            The compressor used to compress the data (default is None).
            Zarr format 2 only. Zarr format 3 arrays should use ``codecs`` instead.

            If no ``compressor`` is provided, a default compressor will be used:

            - For numeric arrays, the default is ``ZstdCodec``.
            - For Unicode strings, the default is ``VLenUTF8Codec``.
            - For bytes or objects, the default is ``VLenBytesCodec``.

            These defaults can be changed by modifying the value of ``array.v2_default_compressor`` in [`zarr.config`][zarr.config].
        overwrite : bool, optional
            Whether to raise an error if the store already exists (default is False).
        data : npt.ArrayLike, optional
            The data to be inserted into the array (default is None).
        config : ArrayConfigLike, optional
            Runtime configuration for the array.

        Returns
        -------
        AsyncArray
            The created asynchronous array instance.
        """
        return await cls._create(
            store,
            # v2 and v3
            shape=shape,
            dtype=dtype,
            zarr_format=zarr_format,
            fill_value=fill_value,
            attributes=attributes,
            # v3 only
            chunk_shape=chunk_shape,
            chunk_key_encoding=chunk_key_encoding,
            codecs=codecs,
            dimension_names=dimension_names,
            # v2 only
            chunks=chunks,
            dimension_separator=dimension_separator,
            order=order,
            filters=filters,
            compressor=compressor,
            # runtime
            overwrite=overwrite,
            data=data,
            config=config,
        )

    @classmethod
    async def _create(
        cls,
        store: StoreLike,
        *,
        # v2 and v3
        shape: ShapeLike,
        dtype: ZDTypeLike | ZDType[TBaseDType, TBaseScalar],
        zarr_format: ZarrFormat = 3,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        attributes: dict[str, JSON] | None = None,
        # v3 only
        chunk_shape: ShapeLike | None = None,
        chunk_key_encoding: (
            ChunkKeyEncodingLike
            | tuple[Literal["default"], Literal[".", "/"]]
            | tuple[Literal["v2"], Literal[".", "/"]]
            | None
        ) = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        # v2 only
        chunks: ShapeLike | None = None,
        dimension_separator: Literal[".", "/"] | None = None,
        order: MemoryOrder | None = None,
        filters: Iterable[dict[str, JSON] | Numcodec] | None = None,
        compressor: CompressorLike = "auto",
        # runtime
        overwrite: bool = False,
        data: npt.ArrayLike | None = None,
        config: ArrayConfigLike | None = None,
    ) -> AsyncArray[ArrayV2Metadata] | AsyncArray[ArrayV3Metadata]:
        """Method to create a new asynchronous array instance.
        Deprecated in favor of [`zarr.api.asynchronous.create_array`][].
        """

        dtype_parsed = parse_dtype(dtype, zarr_format=zarr_format)
        store_path = await make_store_path(store)

        shape = parse_shapelike(shape)

        if chunks is not None and chunk_shape is not None:
            raise ValueError("Only one of chunk_shape or chunks can be provided.")
        item_size = 1
        if isinstance(dtype_parsed, HasItemSize):
            item_size = dtype_parsed.item_size
        if chunks:
            _chunks = normalize_chunks(chunks, shape, item_size)
        else:
            _chunks = normalize_chunks(chunk_shape, shape, item_size)
        config_parsed = parse_array_config(config)

        result: AsyncArray[ArrayV3Metadata] | AsyncArray[ArrayV2Metadata]
        if zarr_format == 3:
            if dimension_separator is not None:
                raise ValueError(
                    "dimension_separator cannot be used for arrays with zarr_format 3. Use chunk_key_encoding instead."
                )
            if filters is not None:
                raise ValueError(
                    "filters cannot be used for arrays with zarr_format 3. Use array-to-array codecs instead."
                )
            if compressor != "auto":
                raise ValueError(
                    "compressor cannot be used for arrays with zarr_format 3. Use bytes-to-bytes codecs instead."
                )

            if order is not None:
                _warn_order_kwarg()

            result = await cls._create_v3(
                store_path,
                shape=shape,
                dtype=dtype_parsed,
                chunk_shape=_chunks,
                fill_value=fill_value,
                chunk_key_encoding=chunk_key_encoding,
                codecs=codecs,
                dimension_names=dimension_names,
                attributes=attributes,
                overwrite=overwrite,
                config=config_parsed,
            )
        elif zarr_format == 2:
            if codecs is not None:
                raise ValueError(
                    "codecs cannot be used for arrays with zarr_format 2. Use filters and compressor instead."
                )
            if chunk_key_encoding is not None:
                raise ValueError(
                    "chunk_key_encoding cannot be used for arrays with zarr_format 2. Use dimension_separator instead."
                )
            if dimension_names is not None:
                raise ValueError("dimension_names cannot be used for arrays with zarr_format 2.")

            if order is None:
                order_parsed = config_parsed.order
            else:
                order_parsed = order
                config_parsed = replace(config_parsed, order=order)

            result = await cls._create_v2(
                store_path,
                shape=shape,
                dtype=dtype_parsed,
                chunks=_chunks,
                dimension_separator=dimension_separator,
                fill_value=fill_value,
                order=order_parsed,
                config=config_parsed,
                filters=filters,
                compressor=compressor,
                attributes=attributes,
                overwrite=overwrite,
            )
        else:
            raise ValueError(f"zarr_format must be 2 or 3, got {zarr_format}")  # pragma: no cover

        if data is not None:
            # insert user-provided data
            await result.setitem(..., data)

        return result

    @staticmethod
    def _create_metadata_v3(
        shape: ShapeLike,
        dtype: ZDType[TBaseDType, TBaseScalar],
        chunk_shape: tuple[int, ...],
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        chunk_key_encoding: ChunkKeyEncodingLike | None = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        attributes: dict[str, JSON] | None = None,
    ) -> ArrayV3Metadata:
        """
        Create an instance of ArrayV3Metadata.
        """
        filters: tuple[ArrayArrayCodec, ...]
        compressors: tuple[BytesBytesCodec, ...]

        shape = parse_shapelike(shape)
        if codecs is None:
            filters = default_filters_v3(dtype)
            serializer = default_serializer_v3(dtype)
            compressors = default_compressors_v3(dtype)

            codecs_parsed = (*filters, serializer, *compressors)
        else:
            codecs_parsed = tuple(codecs)

        chunk_key_encoding_parsed: ChunkKeyEncodingLike
        if chunk_key_encoding is None:
            chunk_key_encoding_parsed = {"name": "default", "separator": "/"}
        else:
            chunk_key_encoding_parsed = chunk_key_encoding

        if isinstance(fill_value, DefaultFillValue) or fill_value is None:
            # Use dtype's default scalar for DefaultFillValue sentinel
            # For v3, None is converted to DefaultFillValue behavior
            fill_value_parsed = dtype.default_scalar()
        else:
            fill_value_parsed = fill_value

        chunk_grid_parsed = RegularChunkGrid(chunk_shape=chunk_shape)
        return ArrayV3Metadata(
            shape=shape,
            data_type=dtype,
            chunk_grid=chunk_grid_parsed,
            chunk_key_encoding=chunk_key_encoding_parsed,
            fill_value=fill_value_parsed,
            codecs=codecs_parsed,  # type: ignore[arg-type]
            dimension_names=tuple(dimension_names) if dimension_names else None,
            attributes=attributes or {},
        )

    @classmethod
    async def _create_v3(
        cls,
        store_path: StorePath,
        *,
        shape: ShapeLike,
        dtype: ZDType[TBaseDType, TBaseScalar],
        chunk_shape: tuple[int, ...],
        config: ArrayConfig,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        chunk_key_encoding: (
            ChunkKeyEncodingLike
            | tuple[Literal["default"], Literal[".", "/"]]
            | tuple[Literal["v2"], Literal[".", "/"]]
            | None
        ) = None,
        codecs: Iterable[Codec | dict[str, JSON]] | None = None,
        dimension_names: DimensionNames = None,
        attributes: dict[str, JSON] | None = None,
        overwrite: bool = False,
    ) -> AsyncArray[ArrayV3Metadata]:
        if overwrite:
            if store_path.store.supports_deletes:
                await store_path.delete_dir()
            else:
                await ensure_no_existing_node(store_path, zarr_format=3)
        else:
            await ensure_no_existing_node(store_path, zarr_format=3)

        if isinstance(chunk_key_encoding, tuple):
            chunk_key_encoding = (
                V2ChunkKeyEncoding(separator=chunk_key_encoding[1])
                if chunk_key_encoding[0] == "v2"
                else DefaultChunkKeyEncoding(separator=chunk_key_encoding[1])
            )

        metadata = cls._create_metadata_v3(
            shape=shape,
            dtype=dtype,
            chunk_shape=chunk_shape,
            fill_value=fill_value,
            chunk_key_encoding=chunk_key_encoding,
            codecs=codecs,
            dimension_names=dimension_names,
            attributes=attributes,
        )

        array = cls(metadata=metadata, store_path=store_path, config=config)
        await array._save_metadata(metadata, ensure_parents=True)
        return array

    @staticmethod
    def _create_metadata_v2(
        shape: tuple[int, ...],
        dtype: ZDType[TBaseDType, TBaseScalar],
        chunks: tuple[int, ...],
        order: MemoryOrder,
        dimension_separator: Literal[".", "/"] | None = None,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        filters: Iterable[dict[str, JSON] | Numcodec] | None = None,
        compressor: CompressorLikev2 = None,
        attributes: dict[str, JSON] | None = None,
    ) -> ArrayV2Metadata:
        if dimension_separator is None:
            dimension_separator = "."

        # Handle DefaultFillValue sentinel
        if isinstance(fill_value, DefaultFillValue):
            fill_value_parsed: Any = dtype.default_scalar()
        else:
            # For v2, preserve None as-is (backward compatibility)
            fill_value_parsed = fill_value

        return ArrayV2Metadata(
            shape=shape,
            dtype=dtype,
            chunks=chunks,
            order=order,
            dimension_separator=dimension_separator,
            fill_value=fill_value_parsed,
            compressor=compressor,
            filters=filters,
            attributes=attributes,
        )

    @classmethod
    async def _create_v2(
        cls,
        store_path: StorePath,
        *,
        shape: tuple[int, ...],
        dtype: ZDType[TBaseDType, TBaseScalar],
        chunks: tuple[int, ...],
        order: MemoryOrder,
        config: ArrayConfig,
        dimension_separator: Literal[".", "/"] | None = None,
        fill_value: Any | None = DEFAULT_FILL_VALUE,
        filters: Iterable[dict[str, JSON] | Numcodec] | None = None,
        compressor: CompressorLike = "auto",
        attributes: dict[str, JSON] | None = None,
        overwrite: bool = False,
    ) -> AsyncArray[ArrayV2Metadata]:
        if overwrite:
            if store_path.store.supports_deletes:
                await store_path.delete_dir()
            else:
                await ensure_no_existing_node(store_path, zarr_format=2)
        else:
            await ensure_no_existing_node(store_path, zarr_format=2)

        compressor_parsed: CompressorLikev2
        if compressor == "auto":
            compressor_parsed = default_compressor_v2(dtype)
        elif isinstance(compressor, BytesBytesCodec):
            raise ValueError(
                "Cannot use a BytesBytesCodec as a compressor for zarr v2 arrays. "
                "Use a numcodecs codec directly instead."
            )
        else:
            compressor_parsed = compressor

        if filters is None:
            filters = default_filters_v2(dtype)

        metadata = cls._create_metadata_v2(
            shape=shape,
            dtype=dtype,
            chunks=chunks,
            order=order,
            dimension_separator=dimension_separator,
            fill_value=fill_value,
            filters=filters,
            compressor=compressor_parsed,
            attributes=attributes,
        )

        array = cls(metadata=metadata, store_path=store_path, config=config)
        await array._save_metadata(metadata, ensure_parents=True)
        return array

    @classmethod
    def from_dict(
        cls,
        store_path: StorePath,
        data: dict[str, JSON],
    ) -> AsyncArray[ArrayV3Metadata] | AsyncArray[ArrayV2Metadata]:
        """
        Create a Zarr array from a dictionary, with support for both Zarr format 2 and 3 metadata.

        Parameters
        ----------
        store_path : StorePath
            The path within the store where the array should be created.

        data : dict
            A dictionary representing the array data. This dictionary should include necessary metadata
            for the array, such as shape, dtype, and other attributes. The format of the metadata
            will determine whether a Zarr format 2 or 3 array is created.

        Returns
        -------
        AsyncArray[ArrayV3Metadata] or AsyncArray[ArrayV2Metadata]
            The created Zarr array, either using Zarr format 2 or 3 metadata based on the provided data.

        Raises
        ------
        ValueError
            If the dictionary data is invalid or incompatible with either Zarr format 2 or 3 array creation.
        """
        metadata = parse_array_metadata(data)
        return cls(metadata=metadata, store_path=store_path)

    @classmethod
    async def open(
        cls,
        store: StoreLike,
        zarr_format: ZarrFormat | None = 3,
    ) -> AsyncArray[ArrayV3Metadata] | AsyncArray[ArrayV2Metadata]:
        """
        Async method to open an existing Zarr array from a given store.

        Parameters
        ----------
        store : StoreLike
            The store containing the Zarr array.
        zarr_format : ZarrFormat | None, optional
            The Zarr format version (default is 3).

        Returns
        -------
        AsyncArray
            The opened Zarr array.

        Examples
        --------
        >>> import zarr
        >>>  store = zarr.storage.MemoryStore()
        >>>  async_arr = await AsyncArray.open(store) # doctest: +ELLIPSIS
        <AsyncArray memory://... shape=(100, 100) dtype=int32>
        """
        store_path = await make_store_path(store)
        metadata_dict = await get_array_metadata(store_path, zarr_format=zarr_format)
        # TODO: remove this cast when we have better type hints
        _metadata_dict = cast("ArrayV3MetadataDict", metadata_dict)
        return cls(store_path=store_path, metadata=_metadata_dict)

    @property
    def store(self) -> Store:
        return self.store_path.store

    @property
    def ndim(self) -> int:
        """Returns the number of dimensions in the Array.

        Returns
        -------
        int
            The number of dimensions in the Array.
        """
        return len(self.metadata.shape)

    @property
    def shape(self) -> tuple[int, ...]:
        """Returns the shape of the Array.

        Returns
        -------
        tuple
            The shape of the Array.
        """
        return self.metadata.shape

    @property
    def chunks(self) -> tuple[int, ...]:
        """Returns the chunk shape of the Array.
        If sharding is used the inner chunk shape is returned.

        Only defined for arrays using using `RegularChunkGrid`.
        If array doesn't use `RegularChunkGrid`, `NotImplementedError` is raised.

        Returns
        -------
        tuple[int, ...]:
            The chunk shape of the Array.
        """
        return self.metadata.chunks

    @property
    def shards(self) -> tuple[int, ...] | None:
        """Returns the shard shape of the Array.
        Returns None if sharding is not used.

        Only defined for arrays using using `RegularChunkGrid`.
        If array doesn't use `RegularChunkGrid`, `NotImplementedError` is raised.

        Returns
        -------
        tuple[int, ...]:
            The shard shape of the Array.
        """
        return self.metadata.shards

    @property
    def size(self) -> int:
        """Returns the total number of elements in the array

        Returns
        -------
        int
            Total number of elements in the array
        """
        return np.prod(self.metadata.shape).item()

    @property
    def filters(self) -> tuple[Numcodec, ...] | tuple[ArrayArrayCodec, ...]:
        """
        Filters that are applied to each chunk of the array, in order, before serializing that
        chunk to bytes.
        """
        if self.metadata.zarr_format == 2:
            filters = self.metadata.filters
            if filters is None:
                return ()
            return filters

        return tuple(
            codec for codec in self.metadata.inner_codecs if isinstance(codec, ArrayArrayCodec)
        )

    @property
    def serializer(self) -> ArrayBytesCodec | None:
        """
        Array-to-bytes codec to use for serializing the chunks into bytes.
        """
        if self.metadata.zarr_format == 2:
            return None

        return next(
            codec for codec in self.metadata.inner_codecs if isinstance(codec, ArrayBytesCodec)
        )

    @property
    @deprecated("Use AsyncArray.compressors instead.", category=ZarrDeprecationWarning)
    def compressor(self) -> Numcodec | None:
        """
        Compressor that is applied to each chunk of the array.

        !!! warning "Deprecated"
            `Array.compressor` is deprecated since v3.0.0 and will be removed in a future release.
            Use [`Array.compressors`][zarr.AsyncArray.compressors] instead.
        """
        if self.metadata.zarr_format == 2:
            return self.metadata.compressor
        raise TypeError("`compressor` is not available for Zarr format 3 arrays.")

    @property
    def compressors(self) -> tuple[Numcodec, ...] | tuple[BytesBytesCodec, ...]:
        """
        Compressors that are applied to each chunk of the array. Compressors are applied in order, and after any
        filters are applied (if any are specified) and the data is serialized into bytes.
        """
        if self.metadata.zarr_format == 2:
            if self.metadata.compressor is not None:
                return (self.metadata.compressor,)
            return ()

        return tuple(
            codec for codec in self.metadata.inner_codecs if isinstance(codec, BytesBytesCodec)
        )

    @property
    def _zdtype(self) -> ZDType[TBaseDType, TBaseScalar]:
        """
        The zarr-specific representation of the array data type
        """
        if self.metadata.zarr_format == 2:
            return self.metadata.dtype
        else:
            return self.metadata.data_type

    @property
    def dtype(self) -> TBaseDType:
        """Returns the data type of the array.

        Returns
        -------
        np.dtype
            Data type of the array
        """
        return self._zdtype.to_native_dtype()

    @property
    def order(self) -> MemoryOrder:
        """Returns the memory order of the array.

        Returns
        -------
        bool
            Memory order of the array
        """
        if self.metadata.zarr_format == 2:
            return self.metadata.order
        else:
            return self._config.order

    @property
    def attrs(self) -> dict[str, JSON]:
        """Returns the attributes of the array.

        Returns
        -------
        dict
            Attributes of the array
        """
        return self.metadata.attributes

    @property
    def read_only(self) -> bool:
        """Returns True if the array is read-only.

        Returns
        -------
        bool
            True if the array is read-only
        """
        # Backwards compatibility for 2.x
        return self.store_path.read_only

    @property
    def path(self) -> str:
        """Storage path.

        Returns
        -------
        str
            The path to the array in the Zarr store.
        """
        return self.store_path.path

    @property
    def name(self) -> str:
        """Array name following h5py convention.

        Returns
        -------
        str
            The name of the array.
        """
        # follow h5py convention: add leading slash
        name = self.path
        if not name.startswith("/"):
            name = "/" + name
        return name

    @property
    def basename(self) -> str:
        """Final component of name.

        Returns
        -------
        str
            The basename or final component of the array name.
        """
        return self.name.split("/")[-1]

    @property
    def cdata_shape(self) -> tuple[int, ...]:
        """
        The shape of the chunk grid for this array.

        Returns
        -------
        tuple[int, ...]
            The shape of the chunk grid for this array.
        """
        return self._chunk_grid_shape

    @property
    def _chunk_grid_shape(self) -> tuple[int, ...]:
        """
        The shape of the chunk grid for this array.

        Returns
        -------
        tuple[int, ...]
            The shape of the chunk grid for this array.
        """
        return tuple(starmap(ceildiv, zip(self.shape, self.chunks, strict=True)))

    @property
    def _shard_grid_shape(self) -> tuple[int, ...]:
        """
        The shape of the shard grid for this array.

        Returns
        -------
        tuple[int, ...]
            The shape of the shard grid for this array.
        """
        if self.shards is None:
            shard_shape = self.chunks
        else:
            shard_shape = self.shards
        return tuple(starmap(ceildiv, zip(self.shape, shard_shape, strict=True)))

    @property
    def nchunks(self) -> int:
        """
        The number of chunks in this array.

        Note that if a sharding codec is used, then the number of chunks may exceed the number of
        stored objects supporting this array.

        Returns
        -------
        int
            The total number of chunks in the array.
        """
        return product(self._chunk_grid_shape)

    @property
    def _nshards(self) -> int:
        """
        The number of shards in this array.

        Returns
        -------
        int
            The total number of shards in the array.
        """
        return product(self._shard_grid_shape)

    async def nchunks_initialized(self) -> int:
        """
        Calculate the number of chunks that have been initialized in storage.

        This value is calculated as the product of the number of initialized shards and the number
        of chunks per shard. For arrays that do not use sharding, the number of chunks per shard is
        effectively 1, and in that case the number of chunks initialized is the same as the number
        of stored objects associated with an array.

        Returns
        -------
        nchunks_initialized : int
            The number of chunks that have been initialized.

        Notes
        -----
        On [`AsyncArray`][zarr.AsyncArray] this is an asynchronous method, unlike the (synchronous)
        property [`Array.nchunks_initialized`][zarr.Array.nchunks_initialized].

        Examples
        --------
        >>> arr = await zarr.api.asynchronous.create(shape=(10,), chunks=(1,), shards=(2,))
        >>> await arr.nchunks_initialized()
        0
        >>> await arr.setitem(slice(5), 1)
        >>> await arr.nchunks_initialized()
        6
        """
        if self.shards is None:
            chunks_per_shard = 1
        else:
            chunks_per_shard = product(
                tuple(a // b for a, b in zip(self.shards, self.chunks, strict=True))
            )
        return (await self._nshards_initialized()) * chunks_per_shard

    async def _nshards_initialized(self) -> int:
        """
        Calculate the number of shards that have been initialized in storage.

        This is the number of shards that have been persisted to the storage backend.

        Returns
        -------
        nshards_initialized : int
            The number of shards that have been initialized.

        Notes
        -----
        On [`AsyncArray`][zarr.AsyncArray] this is an asynchronous method, unlike the (synchronous)
        property [`Array._nshards_initialized`][zarr.Array._nshards_initialized].

        Examples
        --------
        >>> arr = await zarr.api.asynchronous.create(shape=(10,), chunks=(2,))
        >>> await arr._nshards_initialized()
        0
        >>> await arr.setitem(slice(5), 1)
        >>> await arr._nshards_initialized()
        3
        """
        return len(await _shards_initialized(self))

    async def nbytes_stored(self) -> int:
        return await self.store_path.store.getsize_prefix(self.store_path.path)

    def _iter_chunk_coords(
        self, *, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[tuple[int, ...]]:
        """
        Create an iterator over the coordinates of chunks in chunk grid space.

        If the `origin` keyword is used, iteration will start at the chunk index specified by `origin`.
        The default behavior is to start at the origin of the grid coordinate space.
        If the `selection_shape` keyword is used, iteration will be bounded over a contiguous region
        ranging from `[origin, origin selection_shape]`, where the upper bound is exclusive as
        per python indexing conventions.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's chunk grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in chunk grid coordinates.

        Yields
        ------
        chunk_coords: tuple[int, ...]
            The coordinates of each chunk in the selection.
        """
        return _iter_chunk_coords(
            array=self,
            origin=origin,
            selection_shape=selection_shape,
        )

    def _iter_shard_coords(
        self, *, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[tuple[int, ...]]:
        """
        Create an iterator over the coordinates of shards in shard grid space.

        Note that

        If the `origin` keyword is used, iteration will start at the shard index specified by `origin`.
        The default behavior is to start at the origin of the grid coordinate space.
        If the `selection_shape` keyword is used, iteration will be bounded over a contiguous region
        ranging from `[origin, origin selection_shape]`, where the upper bound is exclusive as
        per python indexing conventions.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's shard grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in shard grid coordinates.

        Yields
        ------
        chunk_coords: tuple[int, ...]
            The coordinates of each shard in the selection.
        """
        return _iter_shard_coords(
            array=self,
            origin=origin,
            selection_shape=selection_shape,
        )

    def _iter_shard_keys(
        self, *, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[str]:
        """
        Iterate over the keys of the stored objects supporting this array.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's chunk grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in shard grid coordinates.

        Yields
        ------
        key: str
            The storage key of each chunk in the selection.
        """
        # Iterate over the coordinates of chunks in chunk grid space.
        return _iter_shard_keys(
            array=self,
            origin=origin,
            selection_shape=selection_shape,
        )

    def _iter_chunk_regions(
        self, *, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[tuple[slice, ...]]:
        """
        Iterate over the regions spanned by each chunk.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's chunk grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in chunk grid coordinates.

        Yields
        ------
        region: tuple[slice, ...]
            A tuple of slice objects representing the region spanned by each chunk in the selection.
        """
        return _iter_chunk_regions(
            array=self,
            origin=origin,
            selection_shape=selection_shape,
        )

    def _iter_shard_regions(
        self, *, origin: Sequence[int] | None = None, selection_shape: Sequence[int] | None = None
    ) -> Iterator[tuple[slice, ...]]:
        """
        Iterate over the regions spanned by each shard.

        Parameters
        ----------
        origin : Sequence[int] | None, default=None
            The origin of the selection relative to the array's shard grid.
        selection_shape : Sequence[int] | None, default=None
            The shape of the selection in shard grid coordinates.

        Yields
        ------
        region: tuple[slice, ...]
            A tuple of slice objects representing the region spanned by each shard in the selection.
        """
        return _iter_shard_regions(array=self, origin=origin, selection_shape=selection_shape)

    @property
    def nbytes(self) -> int:
        """
        The total number of bytes that can be stored in the chunks of this array.

        Notes
        -----
        This value is calculated by multiplying the number of elements in the array and the size
        of each element, the latter of which is determined by the dtype of the array.
        For this reason, ``nbytes`` will likely be inaccurate for arrays with variable-length
        dtypes. It is not possible to determine the size of an array with variable-length elements
        from the shape and dtype alone.
        """
        return self.size * self.dtype.itemsize

    async def _get_selection(
        self,
        indexer: Indexer,
        *,
        prototype: BufferPrototype,
        out: NDBuffer | None = None,
        fields: Fields | None = None,
    ) -> NDArrayLikeOrScalar:
        # check fields are sensible
        out_dtype = check_fields(fields, self.dtype)

        # setup output buffer
        if out is not None:
            if isinstance(out, NDBuffer):
                out_buffer = out
            else:
                raise TypeError(f"out argument needs to be an NDBuffer. Got {type(out)!r}")
            if out_buffer.shape != indexer.shape:
                raise ValueError(
                    f"shape of out argument doesn't match. Expected {indexer.shape}, got {out.shape}"
                )
        else:
            out_buffer = prototype.nd_buffer.empty(
                shape=indexer.shape,
                dtype=out_dtype,
                order=self.order,
            )
        if product(indexer.shape) > 0:
            # need to use the order from the metadata for v2
            _config = self._config
            if self.metadata.zarr_format == 2:
                _config = replace(_config, order=self.order)

            # reading chunks and decoding them
            await self.codec_pipeline.read(
                [
                    (
                        self.store_path / self.metadata.encode_chunk_key(chunk_coords),
                        self.metadata.get_chunk_spec(chunk_coords, _config, prototype=prototype),
                        chunk_selection,
                        out_selection,
                        is_complete_chunk,
                    )
                    for chunk_coords, chunk_selection, out_selection, is_complete_chunk in indexer
                ],
                out_buffer,
                drop_axes=indexer.drop_axes,
            )
        if isinstance(indexer, BasicIndexer) and indexer.shape == ():
            return out_buffer.as_scalar()
        return out_buffer.as_ndarray_like()

    async def getitem(
        self,
        selection: BasicSelection,
        *,
        prototype: BufferPrototype | None = None,
    ) -> NDArrayLikeOrScalar:
        """
        Asynchronous function that retrieves a subset of the array's data based on the provided selection.

        Parameters
        ----------
        selection : BasicSelection
            A selection object specifying the subset of data to retrieve.
        prototype : BufferPrototype, optional
            A buffer prototype to use for the retrieved data (default is None).

        Returns
        -------
        NDArrayLikeOrScalar
            The retrieved subset of the array's data.

        Examples
        --------
        >>> import zarr
        >>>  store = zarr.storage.MemoryStore()
        >>>  async_arr = await zarr.api.asynchronous.create_array(
        ...      store=store,
        ...      shape=(100,100),
        ...      chunks=(10,10),
        ...      dtype='i4',
        ...      fill_value=0)
        <AsyncArray memory://... shape=(100, 100) dtype=int32>
        >>> await async_arr.getitem((0,1)) # doctest: +ELLIPSIS
        array(0, dtype=int32)

        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = BasicIndexer(
            selection,
            shape=self.metadata.shape,
            chunk_grid=self.metadata.chunk_grid,
        )
        return await self._get_selection(indexer, prototype=prototype)

    async def get_orthogonal_selection(
        self,
        selection: OrthogonalSelection,
        *,
        out: NDBuffer | None = None,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> NDArrayLikeOrScalar:
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = OrthogonalIndexer(selection, self.shape, self.metadata.chunk_grid)
        return await self._get_selection(
            indexer=indexer, out=out, fields=fields, prototype=prototype
        )

    async def get_mask_selection(
        self,
        mask: MaskSelection,
        *,
        out: NDBuffer | None = None,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> NDArrayLikeOrScalar:
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = MaskIndexer(mask, self.shape, self.metadata.chunk_grid)
        return await self._get_selection(
            indexer=indexer, out=out, fields=fields, prototype=prototype
        )

    async def get_coordinate_selection(
        self,
        selection: CoordinateSelection,
        *,
        out: NDBuffer | None = None,
        fields: Fields | None = None,
        prototype: BufferPrototype | None = None,
    ) -> NDArrayLikeOrScalar:
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = CoordinateIndexer(selection, self.shape, self.metadata.chunk_grid)
        out_array = await self._get_selection(
            indexer=indexer, out=out, fields=fields, prototype=prototype
        )

        if hasattr(out_array, "shape"):
            # restore shape
            out_array = np.array(out_array).reshape(indexer.sel_shape)
        return out_array

    async def _save_metadata(self, metadata: ArrayMetadata, ensure_parents: bool = False) -> None:
        """
        Asynchronously save the array metadata.
        """
        await save_metadata(self.store_path, metadata, ensure_parents=ensure_parents)

    async def _set_selection(
        self,
        indexer: Indexer,
        value: npt.ArrayLike,
        *,
        prototype: BufferPrototype,
        fields: Fields | None = None,
    ) -> None:
        # check fields are sensible
        check_fields(fields, self.dtype)
        fields = check_no_multi_fields(fields)

        # check value shape
        if np.isscalar(value):
            array_like = prototype.buffer.create_zero_length().as_array_like()
            if isinstance(array_like, np._typing._SupportsArrayFunc):
                # TODO: need to handle array types that don't support __array_function__
                # like PyTorch and JAX
                array_like_ = cast("np._typing._SupportsArrayFunc", array_like)
            value = np.asanyarray(value, dtype=self.dtype, like=array_like_)
        else:
            if not hasattr(value, "shape"):
                value = np.asarray(value, self.dtype)
            # assert (
            #     value.shape == indexer.shape
            # ), f"shape of value doesn't match indexer shape. Expected {indexer.shape}, got {value.shape}"
            if not hasattr(value, "dtype") or value.dtype.name != self.dtype.name:
                if hasattr(value, "astype"):
                    # Handle things that are already NDArrayLike more efficiently
                    value = value.astype(dtype=self.dtype, order="A")
                else:
                    value = np.array(value, dtype=self.dtype, order="A")
        value = cast("NDArrayLike", value)

        # We accept any ndarray like object from the user and convert it
        # to a NDBuffer (or subclass). From this point onwards, we only pass
        # Buffer and NDBuffer between components.
        value_buffer = prototype.nd_buffer.from_ndarray_like(value)

        # need to use the order from the metadata for v2
        _config = self._config
        if self.metadata.zarr_format == 2:
            _config = replace(_config, order=self.metadata.order)

        # merging with existing data and encoding chunks
        await self.codec_pipeline.write(
            [
                (
                    self.store_path / self.metadata.encode_chunk_key(chunk_coords),
                    self.metadata.get_chunk_spec(chunk_coords, _config, prototype),
                    chunk_selection,
                    out_selection,
                    is_complete_chunk,
                )
                for chunk_coords, chunk_selection, out_selection, is_complete_chunk in indexer
            ],
            value_buffer,
            drop_axes=indexer.drop_axes,
        )

    async def setitem(
        self,
        selection: BasicSelection,
        value: npt.ArrayLike,
        prototype: BufferPrototype | None = None,
    ) -> None:
        """
        Asynchronously set values in the array using basic indexing.

        Parameters
        ----------
        selection : BasicSelection
            The selection defining the region of the array to set.

        value : numpy.typing.ArrayLike
            The values to be written into the selected region of the array.

        prototype : BufferPrototype or None, optional
            A prototype buffer that defines the structure and properties of the array chunks being modified.
            If None, the default buffer prototype is used. Default is None.

        Returns
        -------
        None
            This method does not return any value.

        Raises
        ------
        IndexError
            If the selection is out of bounds for the array.

        ValueError
            If the values are not compatible with the array's dtype or shape.

        Notes
        -----
        - This method is asynchronous and should be awaited.
        - Supports basic indexing, where the selection is contiguous and does not involve advanced indexing.
        """
        if prototype is None:
            prototype = default_buffer_prototype()
        indexer = BasicIndexer(
            selection,
            shape=self.metadata.shape,
            chunk_grid=self.metadata.chunk_grid,
        )
        return await self._set_selection(indexer, value, prototype=prototype)

    @property
    def oindex(self) -> AsyncOIndex[T_ArrayMetadata]:
        """Shortcut for orthogonal (outer) indexing, see [get_orthogonal_selection][zarr.Array.get_orthogonal_selection] and
        [set_orthogonal_selection][zarr.Array.set_orthogonal_selection] for documentation and examples."""
        return AsyncOIndex(self)

    @property
    def vindex(self) -> AsyncVIndex[T_ArrayMetadata]:
        """Shortcut for vectorized (inner) indexing, see [get_coordinate_selection][zarr.Array.get_coordinate_selection],
        [set_coordinate_selection][zarr.Array.set_coordinate_selection], [get_mask_selection][zarr.Array.get_mask_selection] and
        [set_mask_selection][zarr.Array.set_mask_selection] for documentation and examples."""
        return AsyncVIndex(self)

    async def resize(self, new_shape: ShapeLike, delete_outside_chunks: bool = True) -> None:
        """
        Asynchronously resize the array to a new shape.

        Parameters
        ----------
        new_shape : tuple[int, ...]
            The desired new shape of the array.

        delete_outside_chunks : bool, optional
            If True (default), chunks that fall outside the new shape will be deleted. If False,
            the data in those chunks will be preserved.

        Returns
        -------
        AsyncArray
            The resized array.

        Raises
        ------
        ValueError
            If the new shape is incompatible with the current array's chunking configuration.

        Notes
        -----
        - This method is asynchronous and should be awaited.
        """
        new_shape = parse_shapelike(new_shape)
        assert len(new_shape) == len(self.metadata.shape)
        new_metadata = self.metadata.update_shape(new_shape)

        if delete_outside_chunks:
            # Remove all chunks outside of the new shape
            old_chunk_coords = set(self.metadata.chunk_grid.all_chunk_coords(self.metadata.shape))
            new_chunk_coords = set(self.metadata.chunk_grid.all_chunk_coords(new_shape))

            async def _delete_key(key: str) -> None:
                await (self.store_path / key).delete()

            await concurrent_map(
                [
                    (self.metadata.encode_chunk_key(chunk_coords),)
                    for chunk_coords in old_chunk_coords.difference(new_chunk_coords)
                ],
                _delete_key,
                zarr_config.get("async.concurrency"),
            )

        # Write new metadata
        await self._save_metadata(new_metadata)

        # Update metadata (in place)
        object.__setattr__(self, "metadata", new_metadata)

    async def append(self, data: npt.ArrayLike, axis: int = 0) -> tuple[int, ...]:
        """Append `data` to `axis`.

        Parameters
        ----------
        data : array-like
            Data to be appended.
        axis : int
            Axis along which to append.

        Returns
        -------
        new_shape : tuple

        Notes
        -----
        The size of all dimensions other than `axis` must match between this
        array and `data`.
        """
        # ensure data is array-like
        if not hasattr(data, "shape"):
            data = np.asanyarray(data)

        self_shape_preserved = tuple(s for i, s in enumerate(self.shape) if i != axis)
        data_shape_preserved = tuple(s for i, s in enumerate(data.shape) if i != axis)
        if self_shape_preserved != data_shape_preserved:
            raise ValueError(
                f"shape of data to append is not compatible with the array. "
                f"The shape of the data is ({data_shape_preserved})"
                f"and the shape of the array is ({self_shape_preserved})."
                "All dimensions must match except for the dimension being "
                "appended."
            )
        # remember old shape
        old_shape = self.shape

        # determine new shape
        new_shape = tuple(
            self.shape[i] if i != axis else self.shape[i] + data.shape[i]
            for i in range(len(self.shape))
        )

        # resize
        await self.resize(new_shape)

        # store data
        append_selection = tuple(
            slice(None) if i != axis else slice(old_shape[i], new_shape[i])
            for i in range(len(self.shape))
        )
        await self.setitem(append_selection, data)

        return new_shape

    async def update_attributes(self, new_attributes: dict[str, JSON]) -> Self:
        """
        Asynchronously update the array's attributes.

        Parameters
        ----------
        new_attributes : dict of str to JSON
            A dictionary of new attributes to update or add to the array. The keys represent attribute
            names, and the values must be JSON-compatible.

        Returns
        -------
        AsyncArray
            The array with the updated attributes.

        Raises
        ------
        ValueError
            If the attributes are invalid or incompatible with the array's metadata.

        Notes
        -----
        - This method is asynchronous and should be awaited.
        - The updated attributes will be merged with existing attributes, and any conflicts will be
          overwritten by the new values.
        """
        self.metadata.attributes.update(new_attributes)

        # Write new metadata
        await self._save_metadata(self.metadata)

        return self

    def __repr__(self) -> str:
        return f"<AsyncArray {self.store_path} shape={self.shape} dtype={self.dtype}>"

    @property
    def info(self) -> Any:
        """
        Return the statically known information for an array.

        Returns
        -------
        ArrayInfo

        Related
        -------
        [zarr.AsyncArray.info_complete][] - All information about a group, including dynamic information
            like the number of bytes and chunks written.

        Examples
        --------

        >>> arr = await zarr.api.asynchronous.create(
        ...     path="array", shape=(3, 4, 5), chunks=(2, 2, 2))
        ... )
        >>> arr.info
        Type               : Array
        Zarr format        : 3
        Data type          : DataType.float64
        Shape              : (3, 4, 5)
        Chunk shape        : (2, 2, 2)
        Order              : C
        Read-only          : False
        Store type         : MemoryStore
        Codecs             : [{'endian': <Endian.little: 'little'>}]
        No. bytes          : 480
        """
        return self._info()

    async def info_complete(self) -> Any:
        """
        Return all the information for an array, including dynamic information like a storage size.

        In addition to the static information, this provides

        - The count of chunks initialized
        - The sum of the bytes written

        Returns
        -------
        ArrayInfo

        Related
        -------
        [zarr.AsyncArray.info][] - A property giving just the statically known information about an array.
        """
        return self._info(
            await self._nshards_initialized(),
            await self.store_path.store.getsize_prefix(self.store_path.path),
        )

    def _info(
        self, count_chunks_initialized: int | None = None, count_bytes_stored: int | None = None
    ) -> Any:
        return ArrayInfo(
            _zarr_format=self.metadata.zarr_format,
            _data_type=self._zdtype,
            _fill_value=self.metadata.fill_value,
            _shape=self.shape,
            _order=self.order,
            _shard_shape=self.shards,
            _chunk_shape=self.chunks,
            _read_only=self.read_only,
            _compressors=self.compressors,
            _filters=self.filters,
            _serializer=self.serializer,
            _store_type=type(self.store_path.store).__name__,
            _count_bytes=self.nbytes,
            _count_bytes_stored=count_bytes_stored,
            _count_chunks_initialized=count_chunks_initialized,
        )

attrs property

attrs: dict[str, JSON]

Returns the attributes of the array.

Returns:

  • dict

    Attributes of the array

basename property

basename: str

Final component of name.

Returns:

  • str

    The basename or final component of the array name.

cdata_shape property

cdata_shape: tuple[int, ...]

The shape of the chunk grid for this array.

Returns:

  • tuple[int, ...]

    The shape of the chunk grid for this array.

chunks property

chunks: tuple[int, ...]

Returns the chunk shape of the Array. If sharding is used the inner chunk shape is returned.

Only defined for arrays using using RegularChunkGrid. If array doesn't use RegularChunkGrid, NotImplementedError is raised.

Returns:

  • tuple[int, ...]:

    The chunk shape of the Array.

compressor property

compressor: Numcodec | None

Compressor that is applied to each chunk of the array.

Deprecated

Array.compressor is deprecated since v3.0.0 and will be removed in a future release. Use Array.compressors instead.

compressors property

compressors: (
    tuple[Numcodec, ...] | tuple[BytesBytesCodec, ...]
)

Compressors that are applied to each chunk of the array. Compressors are applied in order, and after any filters are applied (if any are specified) and the data is serialized into bytes.

dtype property

dtype: TBaseDType

Returns the data type of the array.

Returns:

  • dtype

    Data type of the array

filters property

filters: tuple[Numcodec, ...] | tuple[ArrayArrayCodec, ...]

Filters that are applied to each chunk of the array, in order, before serializing that chunk to bytes.

info property

info: Any

Return the statically known information for an array.

Returns:

  • ArrayInfo

Examples:

>>> arr = await zarr.api.asynchronous.create(
...     path="array", shape=(3, 4, 5), chunks=(2, 2, 2))
... )
>>> arr.info
Type               : Array
Zarr format        : 3
Data type          : DataType.float64
Shape              : (3, 4, 5)
Chunk shape        : (2, 2, 2)
Order              : C
Read-only          : False
Store type         : MemoryStore
Codecs             : [{'endian': <Endian.little: 'little'>}]
No. bytes          : 480

name property

name: str

Array name following h5py convention.

Returns:

  • str

    The name of the array.

nbytes property

nbytes: int

The total number of bytes that can be stored in the chunks of this array.

Notes

This value is calculated by multiplying the number of elements in the array and the size of each element, the latter of which is determined by the dtype of the array. For this reason, nbytes will likely be inaccurate for arrays with variable-length dtypes. It is not possible to determine the size of an array with variable-length elements from the shape and dtype alone.

nchunks property

nchunks: int

The number of chunks in this array.

Note that if a sharding codec is used, then the number of chunks may exceed the number of stored objects supporting this array.

Returns:

  • int

    The total number of chunks in the array.

ndim property

ndim: int

Returns the number of dimensions in the Array.

Returns:

  • int

    The number of dimensions in the Array.

oindex property

oindex: AsyncOIndex[T_ArrayMetadata]

Shortcut for orthogonal (outer) indexing, see get_orthogonal_selection and set_orthogonal_selection for documentation and examples.

order property

order: MemoryOrder

Returns the memory order of the array.

Returns:

  • bool

    Memory order of the array

path property

path: str

Storage path.

Returns:

  • str

    The path to the array in the Zarr store.

read_only property

read_only: bool

Returns True if the array is read-only.

Returns:

  • bool

    True if the array is read-only

serializer property

serializer: ArrayBytesCodec | None

Array-to-bytes codec to use for serializing the chunks into bytes.

shape property

shape: tuple[int, ...]

Returns the shape of the Array.

Returns:

  • tuple

    The shape of the Array.

shards property

shards: tuple[int, ...] | None

Returns the shard shape of the Array. Returns None if sharding is not used.

Only defined for arrays using using RegularChunkGrid. If array doesn't use RegularChunkGrid, NotImplementedError is raised.

Returns:

  • tuple[int, ...]:

    The shard shape of the Array.

size property

size: int

Returns the total number of elements in the array

Returns:

  • int

    Total number of elements in the array

vindex property

vindex: AsyncVIndex[T_ArrayMetadata]

Shortcut for vectorized (inner) indexing, see get_coordinate_selection, set_coordinate_selection, get_mask_selection and set_mask_selection for documentation and examples.

append async

append(data: ArrayLike, axis: int = 0) -> tuple[int, ...]

Append data to axis.

Parameters:

  • data (array - like) –

    Data to be appended.

  • axis (int, default: 0 ) –

    Axis along which to append.

Returns:

  • new_shape ( tuple ) –
Notes

The size of all dimensions other than axis must match between this array and data.

Source code in zarr/core/array.py
async def append(self, data: npt.ArrayLike, axis: int = 0) -> tuple[int, ...]:
    """Append `data` to `axis`.

    Parameters
    ----------
    data : array-like
        Data to be appended.
    axis : int
        Axis along which to append.

    Returns
    -------
    new_shape : tuple

    Notes
    -----
    The size of all dimensions other than `axis` must match between this
    array and `data`.
    """
    # ensure data is array-like
    if not hasattr(data, "shape"):
        data = np.asanyarray(data)

    self_shape_preserved = tuple(s for i, s in enumerate(self.shape) if i != axis)
    data_shape_preserved = tuple(s for i, s in enumerate(data.shape) if i != axis)
    if self_shape_preserved != data_shape_preserved:
        raise ValueError(
            f"shape of data to append is not compatible with the array. "
            f"The shape of the data is ({data_shape_preserved})"
            f"and the shape of the array is ({self_shape_preserved})."
            "All dimensions must match except for the dimension being "
            "appended."
        )
    # remember old shape
    old_shape = self.shape

    # determine new shape
    new_shape = tuple(
        self.shape[i] if i != axis else self.shape[i] + data.shape[i]
        for i in range(len(self.shape))
    )

    # resize
    await self.resize(new_shape)

    # store data
    append_selection = tuple(
        slice(None) if i != axis else slice(old_shape[i], new_shape[i])
        for i in range(len(self.shape))
    )
    await self.setitem(append_selection, data)

    return new_shape

create async classmethod

create(
    store: StoreLike,
    *,
    shape: ShapeLike,
    dtype: ZDTypeLike,
    zarr_format: Literal[2],
    fill_value: Any | None = DEFAULT_FILL_VALUE,
    attributes: dict[str, JSON] | None = None,
    chunks: ShapeLike | None = None,
    dimension_separator: Literal[".", "/"] | None = None,
    order: MemoryOrder | None = None,
    filters: list[dict[str, JSON]] | None = None,
    compressor: CompressorLikev2 | Literal["auto"] = "auto",
    overwrite: bool = False,
    data: ArrayLike | None = None,
    config: ArrayConfigLike | None = None,
) -> AsyncArray[ArrayV2Metadata]
create(
    store: StoreLike,
    *,
    shape: ShapeLike,
    dtype: ZDTypeLike,
    zarr_format: Literal[3],
    fill_value: Any | None = DEFAULT_FILL_VALUE,
    attributes: dict[str, JSON] | None = None,
    chunk_shape: ShapeLike | None = None,
    chunk_key_encoding: ChunkKeyEncoding
    | tuple[Literal["default"], Literal[".", "/"]]
    | tuple[Literal["v2"], Literal[".", "/"]]
    | None = None,
    codecs: Iterable[Codec | dict[str, JSON]] | None = None,
    dimension_names: DimensionNames = None,
    overwrite: bool = False,
    data: ArrayLike | None = None,
    config: ArrayConfigLike | None = None,
) -> AsyncArray[ArrayV3Metadata]
create(
    store: StoreLike,
    *,
    shape: ShapeLike,
    dtype: ZDTypeLike,
    zarr_format: Literal[3] = 3,
    fill_value: Any | None = DEFAULT_FILL_VALUE,
    attributes: dict[str, JSON] | None = None,
    chunk_shape: ShapeLike | None = None,
    chunk_key_encoding: ChunkKeyEncoding
    | tuple[Literal["default"], Literal[".", "/"]]
    | tuple[Literal["v2"], Literal[".", "/"]]
    | None = None,
    codecs: Iterable[Codec | dict[str, JSON]] | None = None,
    dimension_names: DimensionNames = None,
    overwrite: bool = False,
    data: ArrayLike | None = None,
    config: ArrayConfigLike | None = None,
) -> AsyncArray[ArrayV3Metadata]
create(
    store: StoreLike,
    *,
    shape: ShapeLike,
    dtype: ZDTypeLike,
    zarr_format: ZarrFormat,
    fill_value: Any | None = DEFAULT_FILL_VALUE,
    attributes: dict[str, JSON] | None = None,
    chunk_shape: ShapeLike | None = None,
    chunk_key_encoding: ChunkKeyEncoding
    | tuple[Literal["default"], Literal[".", "/"]]
    | tuple[Literal["v2"], Literal[".", "/"]]
    | None = None,
    codecs: Iterable[Codec | dict[str, JSON]] | None = None,
    dimension_names: DimensionNames = None,
    chunks: ShapeLike | None = None,
    dimension_separator: Literal[".", "/"] | None = None,
    order: MemoryOrder | None = None,
    filters: list[dict[str, JSON]] | None = None,
    compressor: CompressorLike = "auto",
    overwrite: bool = False,
    data: ArrayLike | None = None,
    config: ArrayConfigLike | None = None,
) -> (
    AsyncArray[ArrayV3Metadata]
    | AsyncArray[ArrayV2Metadata]
)
create(
    store: StoreLike,
    *,
    shape: ShapeLike,
    dtype: ZDTypeLike,
    zarr_format: ZarrFormat = 3,
    fill_value: Any | None = DEFAULT_FILL_VALUE,
    attributes: dict[str, JSON] | None = None,
    chunk_shape: ShapeLike | None = None,
    chunk_key_encoding: ChunkKeyEncodingLike
    | tuple[Literal["default"], Literal[".", "/"]]
    | tuple[Literal["v2"], Literal[".", "/"]]
    | None = None,
    codecs: Iterable[Codec | dict[str, JSON]] | None = None,
    dimension_names: DimensionNames = None,
    chunks: ShapeLike | None = None,
    dimension_separator: Literal[".", "/"] | None = None,
    order: MemoryOrder | None = None,
    filters: list[dict[str, JSON]] | None = None,
    compressor: CompressorLike = "auto",
    overwrite: bool = False,
    data: ArrayLike | None = None,
    config: ArrayConfigLike | None = None,
) -> (
    AsyncArray[ArrayV2Metadata]
    | AsyncArray[ArrayV3Metadata]
)

Method to create a new asynchronous array instance.

Deprecated

AsyncArray.create() is deprecated since v3.0.0 and will be removed in a future release. Use zarr.api.asynchronous.create_array instead.

Parameters:

  • store (StoreLike) –

    The store where the array will be created.

  • shape (ShapeLike) –

    The shape of the array.

  • dtype (ZDTypeLike) –

    The data type of the array.

  • zarr_format (ZarrFormat, default: 3 ) –

    The Zarr format version (default is 3).

  • fill_value (Any, default: DEFAULT_FILL_VALUE ) –

    The fill value of the array (default is None).

  • attributes (dict[str, JSON], default: None ) –

    The attributes of the array (default is None).

  • chunk_shape (tuple[int, ...], default: None ) –

    The shape of the array's chunks Zarr format 3 only. Zarr format 2 arrays should use chunks instead. If not specified, default are guessed based on the shape and dtype.

  • chunk_key_encoding (ChunkKeyEncodingLike, default: None ) –

    A specification of how the chunk keys are represented in storage. Zarr format 3 only. Zarr format 2 arrays should use dimension_separator instead. Default is ("default", "/").

  • codecs (Sequence of Codecs or dicts, default: None ) –

    An iterable of Codec or dict serializations of Codecs. The elements of this collection specify the transformation from array values to stored bytes. Zarr format 3 only. Zarr format 2 arrays should use filters and compressor instead.

    If no codecs are provided, default codecs will be used:

  • dimension_names (Iterable[str | None], default: None ) –

    The names of the dimensions (default is None). Zarr format 3 only. Zarr format 2 arrays should not use this parameter.

  • chunks (ShapeLike, default: None ) –

    The shape of the array's chunks. Zarr format 2 only. Zarr format 3 arrays should use chunk_shape instead. If not specified, default are guessed based on the shape and dtype.

  • dimension_separator (Literal['.', '/'], default: None ) –

    The dimension separator (default is "."). Zarr format 2 only. Zarr format 3 arrays should use chunk_key_encoding instead.

  • order (Literal['C', 'F'], default: None ) –

    The memory of the array (default is "C"). If zarr_format is 2, this parameter sets the memory order of the array. If zarr_format is 3, then this parameter is deprecated, because memory order is a runtime parameter for Zarr 3 arrays. The recommended way to specify the memory order for Zarr 3 arrays is via the config parameter, e.g. {'config': 'C'}.

  • filters (Iterable[Codec] | Literal['auto'], default: None ) –

    Iterable of filters to apply to each chunk of the array, in order, before serializing that chunk to bytes.

    For Zarr format 3, a "filter" is a codec that takes an array and returns an array, and these values must be instances of zarr.abc.codec.ArrayArrayCodec, or a dict representations of zarr.abc.codec.ArrayArrayCodec.

    For Zarr format 2, a "filter" can be any numcodecs codec; you should ensure that the the order if your filters is consistent with the behavior of each filter.

    The default value of "auto" instructs Zarr to use a default used based on the data type of the array and the Zarr format specified. For all data types in Zarr V3, and most data types in Zarr V2, the default filters are empty. The only cases where default filters are not empty is when the Zarr format is 2, and the data type is a variable-length data type like zarr.dtype.VariableLengthUTF8 or zarr.dtype.VariableLengthUTF8. In these cases, the default filters contains a single element which is a codec specific to that particular data type.

    To create an array with no filters, provide an empty iterable or the value None.

  • compressor (dict[str, JSON], default: 'auto' ) –

    The compressor used to compress the data (default is None). Zarr format 2 only. Zarr format 3 arrays should use codecs instead.

    If no compressor is provided, a default compressor will be used:

    • For numeric arrays, the default is ZstdCodec.
    • For Unicode strings, the default is VLenUTF8Codec.
    • For bytes or objects, the default is VLenBytesCodec.

    These defaults can be changed by modifying the value of array.v2_default_compressor in zarr.config.

  • overwrite (bool, default: False ) –

    Whether to raise an error if the store already exists (default is False).

  • data (ArrayLike, default: None ) –

    The data to be inserted into the array (default is None).

  • config (ArrayConfigLike, default: None ) –

    Runtime configuration for the array.

Returns:

  • AsyncArray

    The created asynchronous array instance.

Source code in zarr/core/array.py
@classmethod
@deprecated("Use zarr.api.asynchronous.create_array instead.", category=ZarrDeprecationWarning)
async def create(
    cls,
    store: StoreLike,
    *,
    # v2 and v3
    shape: ShapeLike,
    dtype: ZDTypeLike,
    zarr_format: ZarrFormat = 3,
    fill_value: Any | None = DEFAULT_FILL_VALUE,
    attributes: dict[str, JSON] | None = None,
    # v3 only
    chunk_shape: ShapeLike | None = None,
    chunk_key_encoding: (
        ChunkKeyEncodingLike
        | tuple[Literal["default"], Literal[".", "/"]]
        | tuple[Literal["v2"], Literal[".", "/"]]
        | None
    ) = None,
    codecs: Iterable[Codec | dict[str, JSON]] | None = None,
    dimension_names: DimensionNames = None,
    # v2 only
    chunks: ShapeLike | None = None,
    dimension_separator: Literal[".", "/"] | None = None,
    order: MemoryOrder | None = None,
    filters: list[dict[str, JSON]] | None = None,
    compressor: CompressorLike = "auto",
    # runtime
    overwrite: bool = False,
    data: npt.ArrayLike | None = None,
    config: ArrayConfigLike | None = None,
) -> AsyncArray[ArrayV2Metadata] | AsyncArray[ArrayV3Metadata]:
    """Method to create a new asynchronous array instance.

    !!! warning "Deprecated"
        `AsyncArray.create()` is deprecated since v3.0.0 and will be removed in a future release.
        Use [`zarr.api.asynchronous.create_array`][] instead.

    Parameters
    ----------
    store : StoreLike
        The store where the array will be created.
    shape : ShapeLike
        The shape of the array.
    dtype : ZDTypeLike
        The data type of the array.
    zarr_format : ZarrFormat, optional
        The Zarr format version (default is 3).
    fill_value : Any, optional
        The fill value of the array (default is None).
    attributes : dict[str, JSON], optional
        The attributes of the array (default is None).
    chunk_shape : tuple[int, ...], optional
        The shape of the array's chunks
        Zarr format 3 only. Zarr format 2 arrays should use `chunks` instead.
        If not specified, default are guessed based on the shape and dtype.
    chunk_key_encoding : ChunkKeyEncodingLike, optional
        A specification of how the chunk keys are represented in storage.
        Zarr format 3 only. Zarr format 2 arrays should use `dimension_separator` instead.
        Default is ``("default", "/")``.
    codecs : Sequence of Codecs or dicts, optional
        An iterable of Codec or dict serializations of Codecs. The elements of
        this collection specify the transformation from array values to stored bytes.
        Zarr format 3 only. Zarr format 2 arrays should use ``filters`` and ``compressor`` instead.

        If no codecs are provided, default codecs will be used:
    dimension_names : Iterable[str | None], optional
        The names of the dimensions (default is None).
        Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
    chunks : ShapeLike, optional
        The shape of the array's chunks.
        Zarr format 2 only. Zarr format 3 arrays should use ``chunk_shape`` instead.
        If not specified, default are guessed based on the shape and dtype.
    dimension_separator : Literal[".", "/"], optional
        The dimension separator (default is ".").
        Zarr format 2 only. Zarr format 3 arrays should use ``chunk_key_encoding`` instead.
    order : Literal["C", "F"], optional
        The memory of the array (default is "C").
        If ``zarr_format`` is 2, this parameter sets the memory order of the array.
        If ``zarr_format`` is 3, then this parameter is deprecated, because memory order
        is a runtime parameter for Zarr 3 arrays. The recommended way to specify the memory
        order for Zarr 3 arrays is via the ``config`` parameter, e.g. ``{'config': 'C'}``.
    filters : Iterable[Codec] | Literal["auto"], optional
        Iterable of filters to apply to each chunk of the array, in order, before serializing that
        chunk to bytes.

        For Zarr format 3, a "filter" is a codec that takes an array and returns an array,
        and these values must be instances of [`zarr.abc.codec.ArrayArrayCodec`][], or a
        dict representations of [`zarr.abc.codec.ArrayArrayCodec`][].

        For Zarr format 2, a "filter" can be any numcodecs codec; you should ensure that the
        the order if your filters is consistent with the behavior of each filter.

        The default value of ``"auto"`` instructs Zarr to use a default used based on the data
        type of the array and the Zarr format specified. For all data types in Zarr V3, and most
        data types in Zarr V2, the default filters are empty. The only cases where default filters
        are not empty is when the Zarr format is 2, and the data type is a variable-length data type like
        [`zarr.dtype.VariableLengthUTF8`][] or [`zarr.dtype.VariableLengthUTF8`][]. In these cases,
        the default filters contains a single element which is a codec specific to that particular data type.

        To create an array with no filters, provide an empty iterable or the value ``None``.
    compressor : dict[str, JSON], optional
        The compressor used to compress the data (default is None).
        Zarr format 2 only. Zarr format 3 arrays should use ``codecs`` instead.

        If no ``compressor`` is provided, a default compressor will be used:

        - For numeric arrays, the default is ``ZstdCodec``.
        - For Unicode strings, the default is ``VLenUTF8Codec``.
        - For bytes or objects, the default is ``VLenBytesCodec``.

        These defaults can be changed by modifying the value of ``array.v2_default_compressor`` in [`zarr.config`][zarr.config].
    overwrite : bool, optional
        Whether to raise an error if the store already exists (default is False).
    data : npt.ArrayLike, optional
        The data to be inserted into the array (default is None).
    config : ArrayConfigLike, optional
        Runtime configuration for the array.

    Returns
    -------
    AsyncArray
        The created asynchronous array instance.
    """
    return await cls._create(
        store,
        # v2 and v3
        shape=shape,
        dtype=dtype,
        zarr_format=zarr_format,
        fill_value=fill_value,
        attributes=attributes,
        # v3 only
        chunk_shape=chunk_shape,
        chunk_key_encoding=chunk_key_encoding,
        codecs=codecs,
        dimension_names=dimension_names,
        # v2 only
        chunks=chunks,
        dimension_separator=dimension_separator,
        order=order,
        filters=filters,
        compressor=compressor,
        # runtime
        overwrite=overwrite,
        data=data,
        config=config,
    )

from_dict classmethod

from_dict(
    store_path: StorePath, data: dict[str, JSON]
) -> (
    AsyncArray[ArrayV3Metadata]
    | AsyncArray[ArrayV2Metadata]
)

Create a Zarr array from a dictionary, with support for both Zarr format 2 and 3 metadata.

Parameters:

  • store_path (StorePath) –

    The path within the store where the array should be created.

  • data (dict) –

    A dictionary representing the array data. This dictionary should include necessary metadata for the array, such as shape, dtype, and other attributes. The format of the metadata will determine whether a Zarr format 2 or 3 array is created.

Returns:

  • AsyncArray[ArrayV3Metadata] or AsyncArray[ArrayV2Metadata]

    The created Zarr array, either using Zarr format 2 or 3 metadata based on the provided data.

Raises:

  • ValueError

    If the dictionary data is invalid or incompatible with either Zarr format 2 or 3 array creation.

Source code in zarr/core/array.py
@classmethod
def from_dict(
    cls,
    store_path: StorePath,
    data: dict[str, JSON],
) -> AsyncArray[ArrayV3Metadata] | AsyncArray[ArrayV2Metadata]:
    """
    Create a Zarr array from a dictionary, with support for both Zarr format 2 and 3 metadata.

    Parameters
    ----------
    store_path : StorePath
        The path within the store where the array should be created.

    data : dict
        A dictionary representing the array data. This dictionary should include necessary metadata
        for the array, such as shape, dtype, and other attributes. The format of the metadata
        will determine whether a Zarr format 2 or 3 array is created.

    Returns
    -------
    AsyncArray[ArrayV3Metadata] or AsyncArray[ArrayV2Metadata]
        The created Zarr array, either using Zarr format 2 or 3 metadata based on the provided data.

    Raises
    ------
    ValueError
        If the dictionary data is invalid or incompatible with either Zarr format 2 or 3 array creation.
    """
    metadata = parse_array_metadata(data)
    return cls(metadata=metadata, store_path=store_path)

getitem async

getitem(
    selection: BasicSelection,
    *,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar

Asynchronous function that retrieves a subset of the array's data based on the provided selection.

Parameters:

  • selection (BasicSelection) –

    A selection object specifying the subset of data to retrieve.

  • prototype (BufferPrototype, default: None ) –

    A buffer prototype to use for the retrieved data (default is None).

Returns:

  • NDArrayLikeOrScalar

    The retrieved subset of the array's data.

Examples:

>>> import zarr
>>>  store = zarr.storage.MemoryStore()
>>>  async_arr = await zarr.api.asynchronous.create_array(
...      store=store,
...      shape=(100,100),
...      chunks=(10,10),
...      dtype='i4',
...      fill_value=0)
<AsyncArray memory://... shape=(100, 100) dtype=int32>
>>> await async_arr.getitem((0,1))
array(0, dtype=int32)
Source code in zarr/core/array.py
async def getitem(
    self,
    selection: BasicSelection,
    *,
    prototype: BufferPrototype | None = None,
) -> NDArrayLikeOrScalar:
    """
    Asynchronous function that retrieves a subset of the array's data based on the provided selection.

    Parameters
    ----------
    selection : BasicSelection
        A selection object specifying the subset of data to retrieve.
    prototype : BufferPrototype, optional
        A buffer prototype to use for the retrieved data (default is None).

    Returns
    -------
    NDArrayLikeOrScalar
        The retrieved subset of the array's data.

    Examples
    --------
    >>> import zarr
    >>>  store = zarr.storage.MemoryStore()
    >>>  async_arr = await zarr.api.asynchronous.create_array(
    ...      store=store,
    ...      shape=(100,100),
    ...      chunks=(10,10),
    ...      dtype='i4',
    ...      fill_value=0)
    <AsyncArray memory://... shape=(100, 100) dtype=int32>
    >>> await async_arr.getitem((0,1)) # doctest: +ELLIPSIS
    array(0, dtype=int32)

    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = BasicIndexer(
        selection,
        shape=self.metadata.shape,
        chunk_grid=self.metadata.chunk_grid,
    )
    return await self._get_selection(indexer, prototype=prototype)

info_complete async

info_complete() -> Any

Return all the information for an array, including dynamic information like a storage size.

In addition to the static information, this provides

  • The count of chunks initialized
  • The sum of the bytes written

Returns:

  • ArrayInfo
Source code in zarr/core/array.py
async def info_complete(self) -> Any:
    """
    Return all the information for an array, including dynamic information like a storage size.

    In addition to the static information, this provides

    - The count of chunks initialized
    - The sum of the bytes written

    Returns
    -------
    ArrayInfo

    Related
    -------
    [zarr.AsyncArray.info][] - A property giving just the statically known information about an array.
    """
    return self._info(
        await self._nshards_initialized(),
        await self.store_path.store.getsize_prefix(self.store_path.path),
    )

nchunks_initialized async

nchunks_initialized() -> int

Calculate the number of chunks that have been initialized in storage.

This value is calculated as the product of the number of initialized shards and the number of chunks per shard. For arrays that do not use sharding, the number of chunks per shard is effectively 1, and in that case the number of chunks initialized is the same as the number of stored objects associated with an array.

Returns:

  • nchunks_initialized ( int ) –

    The number of chunks that have been initialized.

Notes

On AsyncArray this is an asynchronous method, unlike the (synchronous) property Array.nchunks_initialized.

Examples:

>>> arr = await zarr.api.asynchronous.create(shape=(10,), chunks=(1,), shards=(2,))
>>> await arr.nchunks_initialized()
0
>>> await arr.setitem(slice(5), 1)
>>> await arr.nchunks_initialized()
6
Source code in zarr/core/array.py
async def nchunks_initialized(self) -> int:
    """
    Calculate the number of chunks that have been initialized in storage.

    This value is calculated as the product of the number of initialized shards and the number
    of chunks per shard. For arrays that do not use sharding, the number of chunks per shard is
    effectively 1, and in that case the number of chunks initialized is the same as the number
    of stored objects associated with an array.

    Returns
    -------
    nchunks_initialized : int
        The number of chunks that have been initialized.

    Notes
    -----
    On [`AsyncArray`][zarr.AsyncArray] this is an asynchronous method, unlike the (synchronous)
    property [`Array.nchunks_initialized`][zarr.Array.nchunks_initialized].

    Examples
    --------
    >>> arr = await zarr.api.asynchronous.create(shape=(10,), chunks=(1,), shards=(2,))
    >>> await arr.nchunks_initialized()
    0
    >>> await arr.setitem(slice(5), 1)
    >>> await arr.nchunks_initialized()
    6
    """
    if self.shards is None:
        chunks_per_shard = 1
    else:
        chunks_per_shard = product(
            tuple(a // b for a, b in zip(self.shards, self.chunks, strict=True))
        )
    return (await self._nshards_initialized()) * chunks_per_shard

open async classmethod

open(
    store: StoreLike, zarr_format: ZarrFormat | None = 3
) -> (
    AsyncArray[ArrayV3Metadata]
    | AsyncArray[ArrayV2Metadata]
)

Async method to open an existing Zarr array from a given store.

Parameters:

  • store (StoreLike) –

    The store containing the Zarr array.

  • zarr_format (ZarrFormat | None, default: 3 ) –

    The Zarr format version (default is 3).

Returns:

Examples:

>>> import zarr
>>>  store = zarr.storage.MemoryStore()
>>>  async_arr = await AsyncArray.open(store)
<AsyncArray memory://... shape=(100, 100) dtype=int32>
Source code in zarr/core/array.py
@classmethod
async def open(
    cls,
    store: StoreLike,
    zarr_format: ZarrFormat | None = 3,
) -> AsyncArray[ArrayV3Metadata] | AsyncArray[ArrayV2Metadata]:
    """
    Async method to open an existing Zarr array from a given store.

    Parameters
    ----------
    store : StoreLike
        The store containing the Zarr array.
    zarr_format : ZarrFormat | None, optional
        The Zarr format version (default is 3).

    Returns
    -------
    AsyncArray
        The opened Zarr array.

    Examples
    --------
    >>> import zarr
    >>>  store = zarr.storage.MemoryStore()
    >>>  async_arr = await AsyncArray.open(store) # doctest: +ELLIPSIS
    <AsyncArray memory://... shape=(100, 100) dtype=int32>
    """
    store_path = await make_store_path(store)
    metadata_dict = await get_array_metadata(store_path, zarr_format=zarr_format)
    # TODO: remove this cast when we have better type hints
    _metadata_dict = cast("ArrayV3MetadataDict", metadata_dict)
    return cls(store_path=store_path, metadata=_metadata_dict)

resize async

resize(
    new_shape: ShapeLike, delete_outside_chunks: bool = True
) -> None

Asynchronously resize the array to a new shape.

Parameters:

  • new_shape (tuple[int, ...]) –

    The desired new shape of the array.

  • delete_outside_chunks (bool, default: True ) –

    If True (default), chunks that fall outside the new shape will be deleted. If False, the data in those chunks will be preserved.

Returns:

Raises:

  • ValueError

    If the new shape is incompatible with the current array's chunking configuration.

Notes
  • This method is asynchronous and should be awaited.
Source code in zarr/core/array.py
async def resize(self, new_shape: ShapeLike, delete_outside_chunks: bool = True) -> None:
    """
    Asynchronously resize the array to a new shape.

    Parameters
    ----------
    new_shape : tuple[int, ...]
        The desired new shape of the array.

    delete_outside_chunks : bool, optional
        If True (default), chunks that fall outside the new shape will be deleted. If False,
        the data in those chunks will be preserved.

    Returns
    -------
    AsyncArray
        The resized array.

    Raises
    ------
    ValueError
        If the new shape is incompatible with the current array's chunking configuration.

    Notes
    -----
    - This method is asynchronous and should be awaited.
    """
    new_shape = parse_shapelike(new_shape)
    assert len(new_shape) == len(self.metadata.shape)
    new_metadata = self.metadata.update_shape(new_shape)

    if delete_outside_chunks:
        # Remove all chunks outside of the new shape
        old_chunk_coords = set(self.metadata.chunk_grid.all_chunk_coords(self.metadata.shape))
        new_chunk_coords = set(self.metadata.chunk_grid.all_chunk_coords(new_shape))

        async def _delete_key(key: str) -> None:
            await (self.store_path / key).delete()

        await concurrent_map(
            [
                (self.metadata.encode_chunk_key(chunk_coords),)
                for chunk_coords in old_chunk_coords.difference(new_chunk_coords)
            ],
            _delete_key,
            zarr_config.get("async.concurrency"),
        )

    # Write new metadata
    await self._save_metadata(new_metadata)

    # Update metadata (in place)
    object.__setattr__(self, "metadata", new_metadata)

setitem async

setitem(
    selection: BasicSelection,
    value: ArrayLike,
    prototype: BufferPrototype | None = None,
) -> None

Asynchronously set values in the array using basic indexing.

Parameters:

  • selection (BasicSelection) –

    The selection defining the region of the array to set.

  • value (ArrayLike) –

    The values to be written into the selected region of the array.

  • prototype (BufferPrototype or None, default: None ) –

    A prototype buffer that defines the structure and properties of the array chunks being modified. If None, the default buffer prototype is used. Default is None.

Returns:

  • None

    This method does not return any value.

Raises:

  • IndexError

    If the selection is out of bounds for the array.

  • ValueError

    If the values are not compatible with the array's dtype or shape.

Notes
  • This method is asynchronous and should be awaited.
  • Supports basic indexing, where the selection is contiguous and does not involve advanced indexing.
Source code in zarr/core/array.py
async def setitem(
    self,
    selection: BasicSelection,
    value: npt.ArrayLike,
    prototype: BufferPrototype | None = None,
) -> None:
    """
    Asynchronously set values in the array using basic indexing.

    Parameters
    ----------
    selection : BasicSelection
        The selection defining the region of the array to set.

    value : numpy.typing.ArrayLike
        The values to be written into the selected region of the array.

    prototype : BufferPrototype or None, optional
        A prototype buffer that defines the structure and properties of the array chunks being modified.
        If None, the default buffer prototype is used. Default is None.

    Returns
    -------
    None
        This method does not return any value.

    Raises
    ------
    IndexError
        If the selection is out of bounds for the array.

    ValueError
        If the values are not compatible with the array's dtype or shape.

    Notes
    -----
    - This method is asynchronous and should be awaited.
    - Supports basic indexing, where the selection is contiguous and does not involve advanced indexing.
    """
    if prototype is None:
        prototype = default_buffer_prototype()
    indexer = BasicIndexer(
        selection,
        shape=self.metadata.shape,
        chunk_grid=self.metadata.chunk_grid,
    )
    return await self._set_selection(indexer, value, prototype=prototype)

update_attributes async

update_attributes(new_attributes: dict[str, JSON]) -> Self

Asynchronously update the array's attributes.

Parameters:

  • new_attributes (dict of str to JSON) –

    A dictionary of new attributes to update or add to the array. The keys represent attribute names, and the values must be JSON-compatible.

Returns:

  • AsyncArray

    The array with the updated attributes.

Raises:

  • ValueError

    If the attributes are invalid or incompatible with the array's metadata.

Notes
  • This method is asynchronous and should be awaited.
  • The updated attributes will be merged with existing attributes, and any conflicts will be overwritten by the new values.
Source code in zarr/core/array.py
async def update_attributes(self, new_attributes: dict[str, JSON]) -> Self:
    """
    Asynchronously update the array's attributes.

    Parameters
    ----------
    new_attributes : dict of str to JSON
        A dictionary of new attributes to update or add to the array. The keys represent attribute
        names, and the values must be JSON-compatible.

    Returns
    -------
    AsyncArray
        The array with the updated attributes.

    Raises
    ------
    ValueError
        If the attributes are invalid or incompatible with the array's metadata.

    Notes
    -----
    - This method is asynchronous and should be awaited.
    - The updated attributes will be merged with existing attributes, and any conflicts will be
      overwritten by the new values.
    """
    self.metadata.attributes.update(new_attributes)

    # Write new metadata
    await self._save_metadata(self.metadata)

    return self