Quick start
This section will help you get up and running with the Zarr library in Python to efficiently manage and analyze multi-dimensional arrays.
Creating an Array¶
To get started, you can create a simple Zarr array:
import zarr
import numpy as np
# Create a 2D Zarr array
z = zarr.create_array(
store="data/example-1.zarr",
shape=(100, 100),
chunks=(10, 10),
dtype="f4"
)
# Assign data to the array
z[:, :] = np.random.random((100, 100))
print(z.info)
Type : Array
Zarr format : 3
Data type : Float32(endianness='little')
Fill value : 0.0
Shape : (100, 100)
Chunk shape : (10, 10)
Order : C
Read-only : False
Store type : LocalStore
Filters : ()
Serializer : BytesCodec(endian=<Endian.little: 'little'>)
Compressors : (ZstdCodec(level=0, checksum=False),)
No. bytes : 40000 (39.1K)
Here, we created a 2D array of shape (100, 100)
, chunked into blocks of
(10, 10)
, and filled it with random floating-point data. This array was
written to a LocalStore
in the data/example-1.zarr
directory.
Compression and Filters¶
Zarr supports data compression and filters. For example, to use Blosc compression:
# Create a 2D Zarr array with Blosc compression
z = zarr.create_array(
store="data/example-2.zarr",
shape=(100, 100),
chunks=(10, 10),
dtype="f4",
compressors=zarr.codecs.BloscCodec(
cname="zstd",
clevel=3,
shuffle=zarr.codecs.BloscShuffle.shuffle
)
)
# Assign data to the array
z[:, :] = np.random.random((100, 100))
print(z.info)
Type : Array
Zarr format : 3
Data type : Float32(endianness='little')
Fill value : 0.0
Shape : (100, 100)
Chunk shape : (10, 10)
Order : C
Read-only : False
Store type : LocalStore
Filters : ()
Serializer : BytesCodec(endian=<Endian.little: 'little'>)
Compressors : (BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=3, shuffle=<BloscShuffle.shuffle: 'shuffle'>, blocksize=0),)
No. bytes : 40000 (39.1K)
This compresses the data using the Blosc codec with shuffle enabled for better compression.
Hierarchical Groups¶
Zarr allows you to create hierarchical groups, similar to directories:
# Create nested groups and add arrays
root = zarr.group("data/example-3.zarr")
foo = root.create_group(name="foo")
bar = root.create_array(
name="bar", shape=(100, 10), chunks=(10, 10), dtype="f4"
)
spam = foo.create_array(name="spam", shape=(10,), dtype="i4")
# Assign values
bar[:, :] = np.random.random((100, 10))
spam[:] = np.arange(10)
# print the hierarchy
print(root.tree())
This creates a group with two datasets: foo
and bar
.
Batch Hierarchy Creation¶
Zarr provides tools for creating a collection of arrays and groups with a single function call. Suppose we want to copy existing groups and arrays into a new storage backend:
# Create nested groups and add arrays
root = zarr.group("data/example-4.zarr", attributes={'name': 'root'})
foo = root.create_group(name="foo")
bar = root.create_array(
name="bar", shape=(100, 10), chunks=(10, 10), dtype="f4"
)
nodes = {'': root.metadata} | {k: v.metadata for k,v in root.members()}
# Report nodes
output = io.StringIO()
pprint(nodes, stream=output, width=60, depth=3)
result = output.getvalue()
print(result)
# Create new hierarchy from nodes
new_nodes = dict(zarr.create_hierarchy(store=zarr.storage.MemoryStore(), nodes=nodes))
new_root = new_nodes['']
assert new_root.attrs == root.attrs
{'': GroupMetadata(attributes={'name': 'root'},
zarr_format=3,
consolidated_metadata=None,
node_type='group'),
'bar': ArrayV3Metadata(shape=(100, 10),
data_type=Float32(endianness='little'),
chunk_grid=RegularChunkGrid(chunk_shape=(10,
10)),
chunk_key_encoding=DefaultChunkKeyEncoding(separator='/'),
fill_value=np.float32(0.0),
codecs=(BytesCodec(endian=<Endian.little: 'little'>),
ZstdCodec(level=0,
checksum=False)),
attributes={},
dimension_names=None,
zarr_format=3,
node_type='array',
storage_transformers=()),
'foo': GroupMetadata(attributes={},
zarr_format=3,
consolidated_metadata=None,
node_type='group')}
Note that zarr.create_hierarchy
will only initialize arrays and groups -- copying array data must
be done in a separate step.
Persistent Storage¶
Zarr supports persistent storage to disk or cloud-compatible backends. While examples above
utilized a zarr.storage.LocalStore
, a number of other storage options are available.
Zarr integrates seamlessly with cloud object storage such as Amazon S3 and Google Cloud Storage using external libraries like s3fs or gcsfs:
import s3fs
z = zarr.create_array("s3://example-bucket/foo", mode="w", shape=(100, 100), chunks=(10, 10), dtype="f4")
z[:, :] = np.random.random((100, 100))
A single-file store can also be created using the zarr.storage.ZipStore
:
# Store the array in a ZIP file
store = zarr.storage.ZipStore("data/example-5.zip", mode="w")
z = zarr.create_array(
store=store,
shape=(100, 100),
chunks=(10, 10),
dtype="f4"
)
# write to the array
z[:, :] = np.random.random((100, 100))
# the ZipStore must be explicitly closed
store.close()
To open an existing array from a ZIP file:
# Open the ZipStore in read-only mode
store = zarr.storage.ZipStore("data/example-5.zip", read_only=True)
z = zarr.open_array(store, mode='r')
# read the data as a NumPy Array
print(z[:])
[[0.66734236 0.15667458 0.98720884 ... 0.36229587 0.67443246 0.34315267]
[0.65787303 0.9544212 0.4830079 ... 0.33097172 0.60423803 0.45621237]
[0.27632037 0.9947008 0.42434934 ... 0.94860053 0.6226942 0.6386924 ]
...
[0.12854576 0.934397 0.19524333 ... 0.11838563 0.4967675 0.43074256]
[0.82029045 0.4671437 0.8090906 ... 0.7814118 0.42650765 0.95929915]
[0.4335856 0.7565437 0.7828931 ... 0.48119593 0.66220033 0.6652362 ]]
Read more about Zarr's storage options in the User Guide.